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What types does SML have?

We’ve seen that SML has some kinds of type constructions, and not
others:

Built-in: unit, products, function types, lists, options

Definable: void, sums, trees, streams

Not definable: GADTs, dependent types, higher-inductive types

But what does it mean for SML to “have” a certain type?

type ’a list = ’a * bool
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Think of the type system as a mathematical object

Answer: Types can be defined by their relationship to other types

We think of the type system as a mathematical object in its own
right,consisting of

Types

Arrows between those types: total functions
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A Bird’s-Eye View of SML
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A Bird’s-Eye View of SML
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A Bird’s-Eye View of SML

int list
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fn x=> x=2

fn b=> if b then 2 else 1

Int.toString
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Theorem

There exists a total function of type int→ bool.

Theorem

For all types τ , τ ′, there exist total functions fst : τ ∗ τ ′ → τ and
snd : τ ∗ τ ′ → τ ′

Theorem

For all types τ , there exists a unique function uτ : τ → unit
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op o is a (partial) binary operation on functions
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Int.toString
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(op o):(’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

Jacob Neumann Category Theory 31 March 2020 7 / 37



op o is a (partial) binary operation on functions

int list

int

bool

int*bool

string

unit
void

fn x=> x=2

Int.toString

snd

fst

(op o):(’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

Jacob Neumann Category Theory 31 March 2020 7 / 37



op o is a (partial) binary operation on functions

int list

int

bool

int*bool

string

unit
void

fn x=> x=2

Int.toString

snd

fst

(op o):(’b -> ’c) * (’a -> ’b) -> (’a -> ’c)

Jacob Neumann Category Theory 31 March 2020 7 / 37



op o Theory

Notice:

(fn x=> x=2) o (fn b=> if b then 2 else 1) = idbool

This is an equation of functions, and it tells us information about the
types bool and int.
op o is important enough that it has it’s own theory.
The theory of op o is called category theory.
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Section 2

Categories
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Definition

A category C consists of:

A collection of objects X ,Y ,Z , . . .

A collection of arrows f , g , h, each with a specified domain and
codomain (e.g. f : X → Z )

such that:

1 For each object X , there exists an arrow idX : X → X called the
identity arrow (on X )

2 For each pair of arrow f : X → Y and g : Y → Z , there exists a
arrow (g ◦ f ) : X → Z , called the composition of g after f

3 Identity arrows are units under composition: for all f : X → Y ,

idY ◦ f = f = f ◦ idX

4 Composition is associative: for all f : A→ B, g : B → C , h : C → D,

(h ◦ g) ◦ f = h ◦ (g ◦ f )
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Example 0: Types!

The type system of SML defines a category:

The objects are types

The arrows are total functions

1 For any type τ , the identity arrow on τ is given by:

val idτ : τ → τ = fn x:τ => x

2 For f:X->Y, g:Y->Z, (g o f):X-> Z

3

idY o f = f = f o idX

4 op o is associative
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Example 1: Set

The collection of all sets is a category:

The objects are sets

The arrows are total functions

1 For any set X , the function idX : X → X given by idX (x) = x is the
identity function

2 Composition is just the usual composition of functions.

3 Identity is a unit for composition

4 Function composition is associative
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Categorical Definitions

When working in a category, the only kind of equations we can write down
are equalities between arrows. So all our definitions must be phrased just
using =, ◦, and arrows.

Consider the following diagram (in some category C):

X Y

Z

f

h
g

What does it mean to say that this diagram commutes?

g ◦ f = h
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Example: Commutative Squares

Consider the following diagram (in some category C):

W X

Y Z

f

h g

k

What does it mean to say that this diagram commutes?

g ◦ f = k ◦ h
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Section 3

Universal Mapping Properties
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Terminal Objects

Two claims:

For every type τ , there exists a unique total function of type
τ → unit.

For every type τ , there is a bijection between the elements t : τ and
the functions unit→ τ .

const : τ → (unit→ τ)

ev() : (unit→ τ)→ τ

const ◦ ev() = id and ev() ◦ const = id.

An object which has these properties is called a terminal object.
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Initial Objects

An object V in a category is called initial if for every other object X , there
exists a unique arrow V → X . Does the SML type system have an initial
type?

Yes! The type datatype void = Void of void is initial, because, given
any other type τ , the function

(fn => raise Fail "Won’t happen") : void→ τ
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Coproducts

Given objects A,B of a category, we say that the object C is a coproduct
of A and B if there exist arrows iA : A→ C and iB : B → P such that

Z

A C B
iA

f

iB

g

For every object Z and arrows f : A→ Z and g : B → Z , there exists a
unique arrow h : C → Z such that

f = h ◦ iA and g = h ◦ iB
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Sum Types are Coproducts

If τ, σ are types, let τ + σ denote the type (τ,σ) either, where

datatype (’a,’b) either = inL of ’a | inR of ’b

Then τ + σ is a coproduct of τ and σ:

C = τ + σ

iτ = inL

iσ = inR

and for any type ρ and any f : τ → ρ, g : σ → ρ,

h = (fn (inL x) => f(x) | (inR y) => g(y)) : τ + σ → ρ

You can check: h o inL = f and h o inR = g.
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Products

Given objects A,B of a category, we say that the object P is a product of
A and B if there exist arrows pr1 : A→ C and pr2 : B → P such that

Z

A P B

h
f g

pr1 pr2

For every object Z and arrows f : Z → A and g : Z → B, there exists a
unique arrow h : Z → C such that

f = pr1 ◦ h and g = pr2 ◦ h
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So do we have products in SML?

Idea: τ*σ is a product of τ and σ:

P = τ*σ

pr1 = fn (x,y) => x

pr2 = fn (x,y) => y

and for any type ρ and any f : ρ→ τ , g : ρ→ σ,

h = fn z => (f z, g z) : ρ→ τ*σ

So then...
f = pr1o h and g = pr2o h
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Mathematics studies transformations between objects

Mathematical fields are generally concerned with certain kinds of objects
and functions between them:

Group Theory: Groups and group homomorphisms

Linear Algebra: Vector spaces and linear transformations

Topology: Topological spaces and continuous functions between them

Category Theory: Categories and ...FUNCTORS!
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An unfortunate naming collision

In SML, we already have a notion called functors, which are things that
map between structures.

This usage is related, but not the same. We’ll use functor to mean a kind
of “function between categories”. In this lecture, we’ll focus on
“endofunctors”: functors from the SML type system to itself.

Jacob Neumann Category Theory 31 March 2020 24 / 37



An unfortunate naming collision

In SML, we already have a notion called functors, which are things that
map between structures.
This usage is related, but not the same. We’ll use functor to mean a kind
of “function between categories”. In this lecture, we’ll focus on
“endofunctors”: functors from the SML type system to itself.

Jacob Neumann Category Theory 31 March 2020 24 / 37



Defn: An endofunctor F on the SML type system consists of

A polymorphic type constructor ’a F.t

A polymorphic function

F.map : (’a -> ’b) -> ’a F.t -> ’b F.t

such that, for all f:t1 -> t2 and all g:t2 -> t3,

F.map (g o f) = (F.map g) o (F.map f)

We think of F.t as being a function on types, the type-level component of
F. We think of F.map as being a function on functions, the function
component of F.
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Examples

Options: ’a F.t = ’a option and

fun map f NONE = NONE | map f (SOME x) = SOME(f x)

Lists: ’a F.t = ’a list and

fun map f [] = [] | map f (x::xs) = (f x)::map f xs

Fixed Products: For some type t1, let ’a F.t = ’a * t1 and

fun map f (x,z) = (f x,z)

Check that:

map (g o f) (x,z) = (g(f(x)),z)

= map g (f(x),z)

= map g (map f (x,z))
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Examples

If F and G are endpfunctors, then G o F is an endofunctor with ’a

(G o F).t = ’a F.t G.t

For some type t1, let ’a F.t = t1 -> ’a, we need

F.map : (’a -> ’b) -> (t1 -> ’a) -> (t1 -> ’b)

fun map (f:’a -> ’b) (x : t1 -> ’a) : t1 -> ’b

= fn z => f(x(z))

val map = curry (op o)

Can we define an endofunctor F with ’a F.t = ’a -> t1?
Answer: No. If we did, we would need F.map to be of type

F.map : (’a -> ’b) -> (’a -> t1) -> (’b -> t1)

Jacob Neumann Category Theory 31 March 2020 27 / 37



Examples

If F and G are endpfunctors, then G o F is an endofunctor with ’a

(G o F).t = ’a F.t G.t

For some type t1, let ’a F.t = t1 -> ’a, we need

F.map : (’a -> ’b) -> (t1 -> ’a) -> (t1 -> ’b)

fun map (f:’a -> ’b) (x : t1 -> ’a) : t1 -> ’b

= fn z => f(x(z))

val map = curry (op o)

Can we define an endofunctor F with ’a F.t = ’a -> t1?
Answer: No. If we did, we would need F.map to be of type

F.map : (’a -> ’b) -> (’a -> t1) -> (’b -> t1)

Jacob Neumann Category Theory 31 March 2020 27 / 37



Examples

If F and G are endpfunctors, then G o F is an endofunctor with ’a

(G o F).t = ’a F.t G.t

For some type t1, let ’a F.t = t1 -> ’a, we need

F.map : (’a -> ’b) -> (t1 -> ’a) -> (t1 -> ’b)

fun map (f:’a -> ’b) (x : t1 -> ’a) : t1 -> ’b

= fn z => f(x(z))

val map = curry (op o)

Can we define an endofunctor F with ’a F.t = ’a -> t1?
Answer: No. If we did, we would need F.map to be of type

F.map : (’a -> ’b) -> (’a -> t1) -> (’b -> t1)

Jacob Neumann Category Theory 31 March 2020 27 / 37



Examples

If F and G are endpfunctors, then G o F is an endofunctor with ’a

(G o F).t = ’a F.t G.t

For some type t1, let ’a F.t = t1 -> ’a, we need

F.map : (’a -> ’b) -> (t1 -> ’a) -> (t1 -> ’b)

fun map (f:’a -> ’b) (x : t1 -> ’a) : t1 -> ’b

= fn z => f(x(z))

val map = curry (op o)

Can we define an endofunctor F with ’a F.t = ’a -> t1?

Answer: No. If we did, we would need F.map to be of type

F.map : (’a -> ’b) -> (’a -> t1) -> (’b -> t1)

Jacob Neumann Category Theory 31 March 2020 27 / 37



Examples

If F and G are endpfunctors, then G o F is an endofunctor with ’a

(G o F).t = ’a F.t G.t

For some type t1, let ’a F.t = t1 -> ’a, we need

F.map : (’a -> ’b) -> (t1 -> ’a) -> (t1 -> ’b)

fun map (f:’a -> ’b) (x : t1 -> ’a) : t1 -> ’b

= fn z => f(x(z))

val map = curry (op o)

Can we define an endofunctor F with ’a F.t = ’a -> t1?
Answer: No. If we did, we would need F.map to be of type

F.map : (’a -> ’b) -> (’a -> t1) -> (’b -> t1)

Jacob Neumann Category Theory 31 March 2020 27 / 37



Defn: A contravariant endofunctor F on the SML type system consists of

A polymorphic type constructor ’a F.t

A polymorphic function

F.comap : (’a -> ’b) -> ’b F.t -> ’a F.t

such that, for all f:t1 -> t2 and all g:t2 -> t3,

F.comap (g o f) = (F.comap f) o (F.comap g)

Example:

For some type t1, let ’a F.t = ’a -> t1, we need

F.comap : (’a -> ’b) -> (’b -> t1) -> (’a -> t1)

fun comap (f:’a -> ’b) (w : ’b -> t1) : ’a -> t1

= fn x => w(f(x))
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Section 5

Natural Transformations
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Our progress so far:

Start with objects (types)

Consider arrows between those objects, yielding categories.

Consider arrows between categories: functors

Consider arrows between functors?
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Defn: Given two endofunctors F and G on the SML type system, a natural
transformation E : F→ G consists of

A polymorphic function E : ’a F.t -> ’a G.t.

such that for all functions f : t1 -> t2,

Et2 o (F.map f) = (G.map f) o Et1

t1 F.t t1 G.t

t2 F.t t2 G.t

F.map f

Et1

G.map f

Et2

We write Et1 to denote E, instantiated at type t1, i.e.
Et1 : t1 F.t -> t1 G.t.
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Examples

The function hd: ’a list -> ’a option is a natural
transformation from the list endofunctor to the option endofunctor

The concat function concat: ’a list list -> ’a list is a
natural transformation list o list→ list.

The function SOME : ’a -> ’a option is a natural transformation
from the identity functor Id (’a Id.t = ’a and Id.map f = f) to
the option endofunctor.

For any endofunctor F, the identity function I: ’a F.t -> ’a F.t

given by I(x)=x is a natural transformation F→ F.
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The category of endofunctors

We can form a category Fun(SML,SML) of endofunctors and natural
transformations, where

The objects are endofunctors on the SML type system

The arrows are natural transformations

We can check that the composition of endofunctors defined earlier is
associative, that the identity transformation works as an identity arrow,
etc.
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Monoid in the category of endofunctors

Defn: An endofunctor T is said to constitute a monad if it comes
equipped with two natural transformations

eta : Id→ T

mu : T o T→ T

such that, for all types τ ,

“mu is associative”:

muτ o (T.map muτ) = muτ o mu(τ T.t)

“eta is a unit for mu”:

muτ o eta(τ T.t) = muτ o T.map etaτ
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Example

list is a monad. eta is the singleton function

fun eta (x : ’a) : ’a list = [x]

and mu is concat:

fun mu (L : ’a list list):’a list = foldr (op @) [] L

The associativity condition says that if we have any L : t1 list

list list,
mu (map mu L) = mu (mu L)

and unit says that for all xs : t1 list,

mu [xs] = mu (map eta xs)

which are both true.

Options are monads

The identity functor is a monad

The functor ’a F.t = (’a -> void) -> void is a monad
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Thank you!
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