

Lambda Calculus as The Internal Language of Cartesian Closed Categories

Jacob Neumann 80-413/713 - November 2020

O CCCs: An Algebraic Perspective

Terminal Objects

A **terminal object** is an object 1, such that for every object A of \mathbb{C} , there is a morphism $!_A : A \to 1$

 $A \xrightarrow{!_A} 1$

such that

for all $f: A \to 1$, $f = !_A$

CCCs: An Algebraic Perspective

Products

For each A, B, their **product** is an object $A \times B$ with an operation $\langle -, - \rangle : \operatorname{Hom}(Z, A) \times \operatorname{Hom}(Z, B) \to \operatorname{Hom}(Z, A \times B)$

and maps $p_1: A \times B \to A$ and $p_2: A \times B \to B$ such that, for all f, g, h,

 $p_1 \circ \langle f, g \rangle = f$ $p_2 \circ \langle f, g \rangle = g$ $\langle p_1 \circ h, p_2 \circ h \rangle = h$

Exponentials

For all B, C, their exponential is an object C^B equipped with an operation

curry : $\operatorname{Hom}(A \times B, C) \to \operatorname{Hom}(A, C^B)$

and a map $\epsilon: C^B \times B \to C$ such that for all $u: A \times B \to C$ and all $v: A \to C^B$,

 $\epsilon \circ ((\operatorname{curry} u) \times 1_B) = u$ $\operatorname{curry}(\epsilon \circ (v \times 1_B)) = v$ Recall $v \times 1_B : A \times B \to C^B \times B$ is $\langle v \circ p_1, p_2 \rangle$.

Note: the operation $v \mapsto \epsilon \circ (v \times 1_B)$ is a kind of "uncurrying".

CCCs: An Algebraic Perspective

Adjunction Definition

This definition is equivalent to the definition of exponentials as right adjoints:

$$(-) \times B \dashv (-)^B.$$

The required isomorphism is given by

 $\begin{aligned} \mathsf{curry}: \mathsf{Hom}(A\times B,C) \to \mathsf{Hom}(A,C^B) \\ & \mathsf{uncurry}: \mathsf{Hom}(A,C^B) \to \mathsf{Hom}(A\times B,C) \end{aligned}$ where $\mathsf{uncurry}(v) = \epsilon \circ \langle v \circ p_1, p_2 \rangle = \epsilon \circ (v \times 1_B). \end{aligned}$

 $\boldsymbol{\epsilon}$ is the counit of the adjunction.

Recall that every adjunction $L \dashv R$ gives rise to a counit natural transform $\epsilon : L \circ R \rightarrow 1_{\text{dom}(R)}$

In the case of $(-) \times B \dashv (-)^B$, this means $\epsilon_C : C^B \times B \to C$

natural in C. This is the "evaluation" morphism for C^B .

Summary

Here, A, B, C, Z range over all objects of $\mathbb C$

Struct	ure	Required Data	Laws
Term	inal	$!_A:A\to 1$	For all $k: A o 1$, $k = !_A$
Obj	ject		
Bin	nary	$p_1: A \times B \to A$	For all $f:Z o A$, $g:Z o B$,
Produ	ucts	$p_2: A \times B \to B$	$p_1 \circ \langle f, g \rangle = f$
		$\langle -,-\rangle: \operatorname{Hom}(Z,A)\times\operatorname{Hom}(Z,B)\to$	$p_2 \circ \langle f,g angle = g$
		$Hom(Z,A\times B)$	For all $h:Z o A imes B$,
			$h = \langle p_1 \circ h, p_2 \circ h \rangle$
Exponentials		$\epsilon_C: C^B \times B \to C$	For all $u: A \times B \to C$, $v: A \to C^B$,
		$curry:Hom(A\times B,C)\toHom(A,C^B)$	$\epsilon \circ ((curry u) imes 1_B) = u$
0			$curry(\epsilon \circ (v imes 1_B)) = v$
U I	ambda (Colculus	

History & Motivation of the Lambda Calculus

The lambda calculus

- Developed in 1930s by Alonzo Church as a mathematical model of computation (prior to the existence of electronic computers).
 Provably equivalent to other such notions (e.g. Turing machines)
- Has "untyped" and "typed" variants
- Theoretical basis of functional programming and type theory

Lambda Calculus studies functions between types, which can be thought of like sets. We denote "x is an element of T" as x : T instead of $x \in T$.

To define a function from T_1 to T_2 , it suffices to specify a rule assigning to each $x : T_1$ some expression $e : T_2$, where the value of e, in general, can depend on x.

 $(\lambda x.e): T_1 \to T_2$

This is the *function* which "accepts" $x : T_1$ and "returns" $e : T_2$.

- We'll build up a system of types T
- We'll define contexts, which consist of several "typed variable declarations"
- In a context Γ , we'll form terms of given types
- In a context Γ , we'll prove equalities between terms

Types

To get started, we fix some set Ty_0 of **basic types**, and recursively generate the set of all types Ty from it.

$$egin{aligned} T,T' &::= T_0 & (T_0 \in \mathbf{Ty}_0) \ & & | \ \mathbf{1} & (& (& (Unit type)) \ & & | \ T imes T' & (& (Product types)) \ & & | \ T o T' & (& (Arrow types)) \end{aligned}$$

Contexts

For some variable name x and some $T \in \mathbf{Ty}$, we can form the **type** judgment x : T, read "x is of type T".

A context Γ is a finite list of typing judgments $x_1 : T_1, \ldots, x_n : T_n$,

$$\begin{split} \Gamma ::= & (\mathsf{Empty context}) \\ & \mid \Gamma, x : T & (\mathsf{Context Extension}) \end{split}$$

(We usually make some syntactic requirements on contexts, e.g. that all the variable names are distinct)

- \checkmark We'll build up a system of types T
- We'll define contexts, which consist of several "typed variable declarations"
- In a context Γ , we'll form terms of given types
- In a context Γ , we'll prove **equalities** between terms

Term-Building Activities

Now recursively build up terms-in-context of these types. We write $\Gamma \vdash t:T$

to indicate that t is a term of type T in context Γ .

• We may also have some basic terms $t_0 \in \mathbf{Tm}_0$, each of a specified <u>basic</u> type. If $t_0 \in \mathbf{Tm}_0$ and is specified to be of type T_0 , then

 $\Gamma \vdash t_0 : T_0$ for any Γ

• \star is always a term of type **1**:

$$\Gamma \vdash \star : \mathbf{1}$$
 for any Γ

Term-Building

```
• If \Gamma \vdash t_1 : T_1 and \Gamma \vdash t_2 : T_2,
                                               \Gamma \vdash (t_1, t_2) : T_1 \times T_2
• If \Gamma \vdash p : T_1 \times T_2.
                            \Gamma \vdash \mathsf{fst}(p) : T_1 and
                                                                            \Gamma \vdash \mathsf{snd}(p) : T_2
• If \Gamma, x: T_1 \vdash e: T_2.
                                               \Gamma \vdash (\lambda x.e) : T_1 \to T_2
• If \Gamma \vdash f : T_1 \to T_2 and \Gamma \vdash v : T_1.
                                                     \Gamma \vdash (f v) : T_2
```

Rules of Lambda Calculus

$$\frac{1}{\Gamma, x: T \vdash x: T} (\mathsf{Var.})$$

$$\frac{\Gamma \vdash x_2 : T_2}{\Gamma, x_1 : T_1 \vdash x_2 : T_2} (\mathsf{Weak.})$$

$$\frac{\Gamma \vdash t:T}{\Gamma \vdash t = t} \quad \frac{\Gamma \vdash t_1 = t_2}{\Gamma \vdash t_2 = t_1} \quad \frac{\Gamma \vdash t_1 = t_2 \quad \Gamma \vdash t_2 = t_3}{\Gamma \vdash t_1 = t_3}$$

1

Lambda Calculus

Unit & Product Rules

$$\frac{\Gamma \vdash w : \mathbf{1}}{\Gamma \vdash w = \star}$$

$$\begin{split} \frac{\Gamma \vdash p: T_1 \times T_2}{\Gamma \vdash (\mathsf{fst}(p), \mathsf{snd}(p)) = p} \\ \frac{\Gamma \vdash t_1: T_1 \quad \Gamma \vdash t_2: T_2}{\Gamma \vdash \mathsf{fst}(t_1, t_2) = t_1} \quad \frac{\Gamma \vdash t_1: T_1 \quad \Gamma \vdash t_2: T_2}{\Gamma \vdash \mathsf{snd}(t_1, t_2) = t_2} \end{split}$$

Lambda Calculus

1

Beta & Eta

$$\frac{\Gamma \vdash (\lambda x.e): T_1 \to T_2 \qquad \Gamma \vdash v: T_1}{\Gamma \vdash (\lambda x.e)(v) = e[v/x]} (\beta)$$

$$\frac{\Gamma \vdash f : T_1 \to T_2}{\Gamma \vdash (\lambda x.f \ x) = f}(\eta)$$

Lambda Calculus

1

Example

Claim 1 For any types T_1, T_2, T_3 and any context Γ , there exist terms in context Γ

 $\Gamma \vdash \mathsf{split} : (T_1 \to T_2 \times T_3) \to (T_1 \to T_2) \times (T_1 \to T_3)$ $\Gamma \vdash \mathsf{pair} : (T_1 \to T_2) \times (T_1 \to T_3) \to (T_1 \to T_2 \times T_3)$

such that

$$\begin{split} & \Gamma, f: T_1 \to T_2 \times T_3 & \vdash \mathsf{pair}(\mathsf{split}(f)) = f \\ & \Gamma, g_1: T_1 \to T_2, g_2: T_1 \to T_3 \vdash \mathsf{split}(\mathsf{pair}(g_1, g_2)) = (g_1, g_2) \end{split}$$

Proof (sketch)

split :=
$$\lambda f.(\lambda x.\mathsf{fst}(f \ x), \lambda x.\mathsf{snd}(f \ x))$$

pair := $\lambda p.\lambda x.(\mathsf{fst}(p)(x), \mathsf{snd}(p)(x))$

1

2 Categorical Semantics

High-level idea

The preceding syntactic structure of types T, contexts Γ , and terms-in-context $\Gamma \vdash x : T$ is the language of lambda calculus, \mathcal{L} .

"Interpret" ${\mathcal L}$ inside a cartesian closed category ${\mathbb C},$ i.e. we want some mapping^1

$$[-]\!]:\mathcal{L}
ightarrow\mathbb{C}$$

In particular, $\llbracket T \rrbracket$ and $\llbracket \Gamma \rrbracket$ will be objects of \mathbb{C} , and $\llbracket \Gamma \vdash x : T \rrbracket$ will be a morphism $\llbracket \Gamma \rrbracket \rightarrow \llbracket T \rrbracket$. Goal:

$$\Gamma \vdash t_1 = t_2$$
 is provable \implies $\llbracket \Gamma \vdash t_1 \rrbracket = \llbracket \Gamma \vdash t_2 \rrbracket$

 $\mathbb{I}[-]$ is actually a functor, if we view \mathcal{L} as a category in an appropriate way.

Interpreting Types

$$egin{aligned} & T,T' ::= T_0 & & & (T_0 \in \mathbf{Ty}_0) \ & & | \ \mathbf{1} & & & & (Unit type) \ & & | \ T imes T' & & & (Product types) \ & & | \ T o T' & & & (Arrow types) \end{aligned}$$

Define the interpretation of types, $\llbracket - \rrbracket : \mathbf{Ty} \to \mathrm{Ob}(\mathbb{C})$. • We must supply $\llbracket T_0 \rrbracket \in \mathrm{Ob}(\mathbb{C})$ for each $T_0 \in \mathbf{Ty}_0$ • $\llbracket \mathbf{1} \rrbracket = 1$, the terminal object • $\llbracket T_1 \times T_2 \rrbracket = \llbracket T_1 \rrbracket \times \llbracket T_2 \rrbracket$ • $\llbracket T_1 \to T_2 \rrbracket = \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket}$ Recall that Ctx, the set of all contexts, is defined recursively by

$$\Gamma ::= (Empty context) \\ | \Gamma, x : T (Context Extension)$$

So define $\llbracket - \rrbracket : \mathbf{Ctx} \to \mathrm{Ob}(\mathbb{C})$

Interpret the empty context as 1, the terminal object
[[Γ, x : T]] = [[Γ]] × [[T]]

Interpreting Terms

To complete our interpretation of the lambda calculus, we must interpret terms-in-context as morphisms of \mathbb{C} . Specifically,

 $[\![\Gamma \vdash t : T]\!] : [\![\Gamma]\!] \to [\![T]\!].$

If t₀ ∈ **T**m₀ is a basic term of type T₀, we must pick [[⊢ t₀ : T₀]] : 1 → [[T₀]]
For any Γ, [[Γ ⊢ ★ : **1**]] =![[Γ]]. [[Γ]] <u>[Γ ⊢ ★: **1**]] → [[**1**]] = 1 <u>Γ ⊢ w : **1**</u> Γ ⊢ w = ★
</u>

Structural Rules

Variable Rule:Weakening: $\overline{\Gamma, x: T \vdash x: T}$ $\overline{\Gamma \vdash x_2: T_2}$ $\overline{\Gamma, x_1: T_1 \vdash x_2: T_2}$

$\llbracket \Gamma \rrbracket \times \llbracket T \rrbracket \xrightarrow{p_2} \llbracket T \rrbracket \qquad \llbracket \Gamma \rrbracket \times \llbracket T_1 \rrbracket \xrightarrow{\llbracket \Gamma \vdash x_2: T_2 \rrbracket \times !_{\llbracket T_1 \rrbracket}} \llbracket T_2 \rrbracket \times 1 = \llbracket T_2 \rrbracket$

Categorical Semantics

Product Terms

• $\llbracket \Gamma \vdash (t_1, t_2) : T_1 \times T_2 \rrbracket = \langle \llbracket \Gamma \vdash t_1 : T_1 \rrbracket, \llbracket \Gamma \vdash t_2 : T_2 \rrbracket \rangle$ • $\llbracket \Gamma \vdash \mathsf{fst}(p) : T_1 \rrbracket = p_1 \circ \llbracket \Gamma \vdash p : T_1 \times T_2 \rrbracket$

Product Rules

$$\frac{\Gamma \vdash p: T_1 \times T_2}{\Gamma \vdash (\mathsf{fst}(p), \mathsf{snd}(p)) = p}$$

$$\frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : T_2}{\Gamma \vdash \mathsf{fst}(t_1, t_2) = t_1} \qquad \frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : T_2}{\Gamma \vdash \mathsf{snd}(t_1, t_2) = t_2}$$

Lambda Calculus

Categorical Semantics

Arrows are Exponentials

Abstraction: want to fulfill

$$\frac{\Gamma, x: T_1 \vdash e: T_2}{\Gamma \vdash (\lambda x. e): T_1 \to T_2}$$

i.e. given $\llbracket \Gamma \rrbracket \times \llbracket T_1 \rrbracket \to \llbracket T_2 \rrbracket$, define a morphism $\llbracket \Gamma \rrbracket \to \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket}$ Application: want to fulfill

$$\frac{\Gamma \vdash f : T_1 \to T_2 \qquad \Gamma \vdash v : T_1}{\Gamma \vdash (f \ v) : T_2}$$

i.e. given $\llbracket \Gamma \rrbracket \to \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket}$ and $\llbracket \Gamma \rrbracket \to \llbracket T_1 \rrbracket$, define a morphism $\llbracket \Gamma \rrbracket \to \llbracket T_2 \rrbracket$

λ -Abstraction

$$\begin{split} \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket} & \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket} \times \llbracket T_1 \rrbracket \xrightarrow{\epsilon} \llbracket T_2 \rrbracket \\ \llbracket \Gamma \vdash (\lambda x.e): T_1 \to T_2 \rrbracket & \llbracket \Gamma \vdash (\lambda x.e): T_1 \to T_2 \rrbracket \times 1_{\llbracket T_1 \rrbracket} & \llbracket \Gamma, x: T_1 \vdash e: T_2 \rrbracket \\ & \llbracket \Gamma \rrbracket & \llbracket \Gamma, x: T_1 \rrbracket & \end{split}$$

 $\llbracket \Gamma \vdash (\lambda x.e) : T_1 \to T_2 \rrbracket := \mathsf{curry} \llbracket \Gamma, x : T_1 \vdash e : T_2 \rrbracket$

2

Lambda Calculus

Categorical Semantics

Application

$\llbracket \Gamma \vdash (f \ v) : T_2 \rrbracket := \epsilon \circ \langle \llbracket \Gamma \vdash f : T_1 \to T_2 \rrbracket, \llbracket \Gamma \vdash v : T_1 \rrbracket \rangle$

Categorical Semantics

If we define substitution in the appropriate way, the β rule

$$\frac{\Gamma \vdash (\lambda x.e): T_1 \to T_2 \qquad \Gamma \vdash v: T_1}{\Gamma \vdash (\lambda x.e)(v) = e[v/x]} (\beta)$$

is valid for every interpretation of lambda calculus in any CCC, i.e. $\llbracket \Gamma \vdash (\lambda x.e)(v) \rrbracket = \llbracket \Gamma \vdash e[v/x] \rrbracket$. This usually involves proving a "substitution lemma".

The η rule

$$\frac{\Gamma \vdash f : T_1 \to T_2}{\Gamma \vdash (\lambda x.f \ x) = f}(\eta)$$

is valid for all interpretations: $\llbracket \Gamma \vdash \lambda x. f x \rrbracket = \llbracket \Gamma \vdash f \rrbracket$. This is proved using the universal property of exponentials.

Soundness

Thm. 1 (Soundness) For any CCC \mathbb{C} and any interpretation $\llbracket - \rrbracket : \mathcal{L} \to \mathbb{C}$ and any terms $t_1, t_2 : T$ in context Γ , if we can deduce

$$\Gamma \vdash t_1 = t_2$$

using the rules of lambda calculus, then

$$\llbracket \Gamma \vdash t_1 : T \rrbracket = \llbracket \Gamma \vdash t_2 : T \rrbracket.$$

Proof by induction on the deduction of $\Gamma \vdash t_1 = t_2$.

Isomorphism Corollary

Cor. 1.1 If T_1 and T_2 are types and in any context Γ there exists terms $\Gamma \vdash F : T_1 \to T_2$ $\Gamma \vdash G : T_2 \to T_1$

such that

 $\Gamma, x: T_1 \vdash G(F(x)) = x \qquad \Gamma, y: T_2 \vdash F(G(y)) = y$

then

 $\llbracket T_1 \rrbracket \cong \llbracket T_2 \rrbracket.$

Cor 1.2 If \mathbb{C} is a CCC, $\llbracket - \rrbracket : \mathcal{L} \to \mathbb{C}$, then for any types T_1, T_2, T_3 , $(\llbracket T_2 \rrbracket \times \llbracket T_3 \rrbracket)^{\llbracket T_1 \rrbracket} \cong \llbracket T_2 \rrbracket^{\llbracket T_1 \rrbracket} \times \llbracket T_3 \rrbracket^{\llbracket T_1 \rrbracket}$ Proof: By Claim 1 and Cor 1.1.

Results

Language of a CCC

For any CCC \mathbb{C} , we can define the language of \mathbb{C} , $\mathcal{L}(\mathbb{C})$, to be the lambda calculus language

- $\, \bullet \,$ whose basic types are the objects of \mathbb{C}
- whose basic terms of type X are the morphisms $1 \to X$ in \mathbb{C} . Define a canonical $[\![-]\!] : \mathcal{L}(\mathbb{C}) \to \mathbb{C}$ by interpreting each basic type and term as itself.

Thm. 2 For any objects X, Y, Z of a cartesian closed category, there is an isomorphism

$$(Y \times Z)^X \cong Y^X \times Z^X$$

Further Directions

- Completeness: Prove that any equality which is valid in every CCC is provable in the lambda calculus.
- Duality: Show that the syntax of lambda calculus is in a sense dual to its model theory
- Add fancier stuff:
 - Initial object
 - Coproducts
 - Natural numbers object, and other inductive types
 - Dependent types and higher inductive types

 Do an analogous development for other formal systems and classes of categories (categorical logic!)

Thank you!