
Lambda Calculus

Jacob Neumann
80-413/713 - November 2020

as The Internal Language of Cartesian Closed
Categories



0 CCCs: An Algebraic Perspective



Terminal Objects

A terminal object is an object 1, such that for every object A of C,
there is a morphism !A : A→ 1

A 1
!A

such that
for all f : A→ 1, f =!A

0 Lambda Calculus CCCs: An Algebraic Perspective



Products

For each A,B, their product is an object A×B with an operation

〈−,−〉 : Hom(Z,A)× Hom(Z,B)→ Hom(Z,A×B)

and maps p1 : A×B → A and p2 : A×B → B such that, for all f, g, h,

p1 ◦ 〈f, g〉 = f

p2 ◦ 〈f, g〉 = g

〈p1 ◦ h, p2 ◦ h〉 = h

0 Lambda Calculus CCCs: An Algebraic Perspective



Exponentials

For all B,C, their exponential is an object CB equipped with an
operation

curry : Hom(A×B,C)→ Hom(A,CB)

and a map ε : CB ×B → C such that for all u : A×B → C and all
v : A→ CB,

ε ◦ ((curry u)× 1B) = u

curry(ε ◦ (v × 1B)) = v

Recall v × 1B : A×B → CB ×B is 〈v ◦ p1, p2〉.

0 Lambda Calculus CCCs: An Algebraic Perspective



CB CB ×B C

A A×B

ε

curry u (curry u)×1B u

Note: the operation v 7→ ε ◦ (v × 1B) is a kind of “uncurrying”.

0 Lambda Calculus CCCs: An Algebraic Perspective



Adjunction Definition

This definition is equivalent to the definition of exponentials as right
adjoints:

(−)×B a (−)B.

The required isomorphism is given by

curry : Hom(A×B,C)→ Hom(A,CB)

uncurry : Hom(A,CB)→ Hom(A×B,C)

where uncurry(v) = ε ◦ 〈v ◦ p1, p2〉 = ε ◦ (v × 1B).

0 Lambda Calculus CCCs: An Algebraic Perspective



ε is the counit of the adjunction.

Recall that every adjunction L a R gives rise to a counit natural
transform ε : L ◦R→ 1dom(R)

In the case of (−)×B a (−)B, this means

εC : CB ×B → C

natural in C. This is the “evaluation” morphism for CB.

0 Lambda Calculus CCCs: An Algebraic Perspective



Summary

Here, A,B,C,Z range over all objects of C

Structure Required Data Laws

Terminal !A : A→ 1 For all k : A→ 1, k =!A

Object

Binary p1 : A×B → A For all f : Z → A, g : Z → B,

Products p2 : A×B → B p1 ◦ 〈f, g〉 = f

〈−,−〉 : Hom(Z,A)× Hom(Z,B)→ p2 ◦ 〈f, g〉 = g

Hom(Z,A×B) For all h : Z → A×B,

h = 〈p1 ◦ h, p2 ◦ h〉
Exponentials εC : CB ×B → C For all u : A×B → C, v : A→ CB,

curry : Hom(A×B,C)→ Hom(A,CB) ε ◦ ((curry u)× 1B) = u

curry(ε ◦ (v × 1B)) = v
0 Lambda Calculus



1 The Simply-Typed Lambda Calculus



History & Motivation of the Lambda Calculus

The lambda calculus

• Developed in 1930s by Alonzo Church as a mathematical model of
computation (prior to the existence of electronic computers).
Provably equivalent to other such notions (e.g. Turing machines)

• Has “untyped” and “typed” variants

• Theoretical basis of functional programming and type theory

1 Lambda Calculus The Simply-Typed Lambda Calculus



Lambda Abstraction

Lambda Calculus studies functions between types, which can be thought
of like sets. We denote “x is an element of T” as x : T instead of x ∈ T .

To define a function from T1 to T2, it suffices to specify a rule assigning
to each x : T1 some expression e : T2, where the value of e, in general,
can depend on x.

(λx.e) : T1 → T2

This is the function which “accepts” x : T1 and “returns” e : T2.

1 Lambda Calculus The Simply-Typed Lambda Calculus



General Setup

• We’ll build up a system of types T

• We’ll define contexts, which consist of several “typed variable
declarations”

• In a context Γ, we’ll form terms of given types

• In a context Γ, we’ll prove equalities between terms

1 Lambda Calculus The Simply-Typed Lambda Calculus



Types

To get started, we fix some set Ty0 of basic types, and recursively
generate the set of all types Ty from it.

T, T ′ ::= T0 (T0 ∈ Ty0)

| 1 (Unit type)

| T × T ′ (Product types)

| T → T ′ (Arrow types)

1 Lambda Calculus The Simply-Typed Lambda Calculus



Contexts

For some variable name x and some T ∈ Ty, we can form the type
judgment x : T , read “x is of type T”.

A context Γ is a finite list of typing judgments x1 : T1, . . . , xn : Tn,

Γ ::= (Empty context)

| Γ, x : T (Context Extension)

(We usually make some syntactic requirements on contexts, e.g. that all the variable names are distinct)

1 Lambda Calculus The Simply-Typed Lambda Calculus



General Setup

X We’ll build up a system of types T

X We’ll define contexts, which consist of several “typed variable
declarations”

• In a context Γ, we’ll form terms of given types

• In a context Γ, we’ll prove equalities between terms

1 Lambda Calculus The Simply-Typed Lambda Calculus



Term-Building Activities

Now recursively build up terms-in-context of these types. We write

Γ ` t : T

to indicate that t is a term of type T in context Γ.

• We may also have some basic terms t0 ∈ Tm0, each of a specified
basic type. If t0 ∈ Tm0 and is specified to be of type T0, then

Γ ` t0 : T0 for any Γ

• ? is always a term of type 1:

Γ ` ? : 1 for any Γ

1 Lambda Calculus The Simply-Typed Lambda Calculus



Term-Building

• If Γ ` t1 : T1 and Γ ` t2 : T2,

Γ ` (t1, t2) : T1 × T2

• If Γ ` p : T1 × T2,

Γ ` fst(p) : T1 and Γ ` snd(p) : T2

• If Γ, x : T1 ` e : T2,
Γ ` (λx.e) : T1 → T2

• If Γ ` f : T1 → T2 and Γ ` v : T1,

Γ ` (f v) : T2

1 Lambda Calculus The Simply-Typed Lambda Calculus



Rules of Lambda Calculus

Γ, x : T ` x : T
(Var.)

Γ ` x2 : T2

Γ, x1 : T1 ` x2 : T2
(Weak.)

Γ ` t : T

Γ ` t = t

Γ ` t1 = t2
Γ ` t2 = t1

Γ ` t1 = t2 Γ ` t2 = t3
Γ ` t1 = t3

1 Lambda Calculus The Simply-Typed Lambda Calculus



Unit & Product Rules

Γ ` w : 1

Γ ` w = ?

Γ ` p : T1 × T2

Γ ` (fst(p), snd(p)) = p

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` fst(t1, t2) = t1

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` snd(t1, t2) = t2

1 Lambda Calculus The Simply-Typed Lambda Calculus



Beta & Eta

Γ ` (λx.e) : T1 → T2 Γ ` v : T1

Γ ` (λx.e)(v) = e[v/x]
(β)

Γ ` f : T1 → T2

Γ ` (λx.f x) = f
(η)

1 Lambda Calculus The Simply-Typed Lambda Calculus



Example

Claim 1 For any types T1, T2, T3 and any context Γ, there exist terms in
context Γ

Γ ` split : (T1 → T2 × T3)→ (T1 → T2)× (T1 → T3)

Γ ` pair : (T1 → T2)× (T1 → T3)→ (T1 → T2 × T3)

such that

Γ, f : T1 → T2 × T3 ` pair(split(f)) = f

Γ, g1 : T1 → T2, g2 : T1 → T3 ` split(pair(g1, g2)) = (g1, g2)

1 Lambda Calculus The Simply-Typed Lambda Calculus



Proof (sketch)

split :≡ λf.(λx.fst(f x), λx.snd(f x))

pair :≡ λp.λx.(fst(p)(x), snd(p)(x))

1 Lambda Calculus The Simply-Typed Lambda Calculus



2 Categorical Semantics



High-level idea

The preceding syntactic structure of types T , contexts Γ, and
terms-in-context Γ ` x : T is the language of lambda calculus, L.

“Interpret” L inside a cartesian closed category C, i.e. we want some
mapping1

J−K : L → C

In particular, JT K and JΓK will be objects of C, and JΓ ` x : T K will be a
morphism JΓK→ JT K. Goal:

Γ ` t1 = t2 is provable =⇒ JΓ ` t1K = JΓ ` t2K
1J−K is actually a functor, if we view L as a category in an appropriate way.

2 Lambda Calculus Categorical Semantics



Interpreting Types

T, T ′ ::= T0 (T0 ∈ Ty0)

| 1 (Unit type)

| T × T ′ (Product types)

| T → T ′ (Arrow types)

Define the interpretation of types, J−K : Ty→ Ob(C).

• We must supply JT0K ∈ Ob(C) for each T0 ∈ Ty0

• J1K = 1, the terminal object

• JT1 × T2K = JT1K× JT2K
• JT1 → T2K = JT2KJT1K

2 Lambda Calculus Categorical Semantics



Interpreting Contexts

Recall that Ctx, the set of all contexts, is defined recursively by

Γ ::= (Empty context)

| Γ, x : T (Context Extension)

So define J−K : Ctx→ Ob(C)

• Interpret the empty context as 1, the terminal object

• JΓ, x : T K = JΓK× JT K

2 Lambda Calculus Categorical Semantics



Interpreting Terms

To complete our interpretation of the lambda calculus, we must interpret
terms-in-context as morphisms of C. Specifically,

JΓ ` t : T K : JΓK→ JT K.

• If t0 ∈ Tm0 is a basic term of type T0, we must pick
J` t0 : T0K : 1→ JT0K
• For any Γ, JΓ ` ? : 1K =!JΓK.

JΓK J1K = 1
JΓ ` ?:1K Γ ` w : 1

Γ ` w = ?

2 Lambda Calculus Categorical Semantics



Structural Rules

Variable Rule:

Γ, x : T ` x : T

JΓK× JT K JT Kp2

Weakening:

Γ ` x2 : T2

Γ, x1 : T1 ` x2 : T2

JΓK× JT1K JT2K× 1 = JT2K
JΓ`x2:T2K × !JT1K

2 Lambda Calculus Categorical Semantics



Product Terms

JT1K

JΓK JT1 × T2K

JT2K

JΓ`t1:T1K

JΓ`t2:T2K

JΓ`(t1,t2):T1×T2K

p1

p2

• JΓ ` (t1, t2) : T1 × T2K = 〈JΓ ` t1 : T1K, JΓ ` t2 : T2K〉
• JΓ ` fst(p) : T1K = p1 ◦ JΓ ` p : T1 × T2K

2 Lambda Calculus Categorical Semantics



Product Rules

Γ ` p : T1 × T2

Γ ` (fst(p), snd(p)) = p

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` fst(t1, t2) = t1

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` snd(t1, t2) = t2

2 Lambda Calculus Categorical Semantics



Arrows are Exponentials

• Abstraction: want to fulfill

Γ, x : T1 ` e : T2

Γ ` (λx.e) : T1 → T2

i.e. given JΓK× JT1K→ JT2K, define a morphism JΓK→ JT2KJT1K

• Application: want to fulfill

Γ ` f : T1 → T2 Γ ` v : T1

Γ ` (f v) : T2

i.e. given JΓK→ JT2KJT1K and JΓK→ JT1K, define a morphism
JΓK→ JT2K

2 Lambda Calculus Categorical Semantics



λ-Abstraction

JT2KJT1K JT2KJT1K × JT1K JT2K

JΓK JΓ, x : T1K

ε

JΓ`(λx.e):T1→T2K JΓ`(λx.e):T1→T2K×1JT1K
JΓ,x:T1`e:T2K

JΓ ` (λx.e) : T1 → T2K := curry JΓ, x : T1 ` e : T2K

2 Lambda Calculus Categorical Semantics



Application

JT2KJT1K

JΓK JT2KJT1K × JT1K JT2K

JT1K

JΓ`f :T1→T2K

JΓ`v:T1K

〈JΓ`fK,JΓ`vK〉 ε

p1

p2

JΓ ` (f v) : T2K := ε ◦ 〈JΓ ` f : T1 → T2K, JΓ ` v : T1K〉

2 Lambda Calculus Categorical Semantics



Beta

If we define substitution in the appropriate way, the β rule

Γ ` (λx.e) : T1 → T2 Γ ` v : T1

Γ ` (λx.e)(v) = e[v/x]
(β)

is valid for every interpretation of lambda calculus in any CCC, i.e.
JΓ ` (λx.e)(v)K = JΓ ` e[v/x]K. This usually involves proving a
“substitution lemma”.

2 Lambda Calculus Categorical Semantics



Eta

The η rule
Γ ` f : T1 → T2

Γ ` (λx.f x) = f
(η)

is valid for all interpretations: JΓ ` λx.f xK = JΓ ` fK.This is proved
using the universal property of exponentials.

2 Lambda Calculus Categorical Semantics



3 Results



Soundness

Thm. 1 (Soundness) For any CCC C and any interpretation
J−K : L → C and any terms t1, t2 : T in context Γ, if we can deduce

Γ ` t1 = t2

using the rules of lambda calculus, then

JΓ ` t1 : T K = JΓ ` t2 : T K.

Proof by induction on the deduction of Γ ` t1 = t2.

3 Lambda Calculus Results



Isomorphism Corollary

Cor. 1.1 If T1 and T2 are types and in any context Γ there exists terms

Γ ` F : T1 → T2

Γ ` G : T2 → T1

such that

Γ, x : T1 ` G(F (x)) = x Γ, y : T2 ` F (G(y)) = y

then
JT1K ∼= JT2K.

3 Lambda Calculus Results



Application

Cor 1.2 If C is a CCC, J−K : L → C, then for any types T1, T2, T3,

(JT2K× JT3K)JT1K ∼= JT2KJT1K × JT3KJT1K

Proof : By Claim 1 and Cor 1.1 .

3 Lambda Calculus Results



Language of a CCC

For any CCC C, we can define the language of C, L(C), to be the
lambda calculus language

• whose basic types are the objects of C
• whose basic terms of type X are the morphisms 1→ X in C.

Define a canonical J−K : L(C)→ C by interpreting each basic type and
term as itself.

Thm. 2 For any objects X, Y, Z of a cartesian closed category, there is
an isomorphism

(Y × Z)X ∼= Y X × ZX

3 Lambda Calculus Results



Further Directions

• Completeness: Prove that any equality which is valid in every CCC is
provable in the lambda calculus.

• Duality: Show that the syntax of lambda calculus is – in a sense –
dual to its model theory
• Add fancier stuff:

I Initial object
I Coproducts
I Natural numbers object, and other inductive types
I Dependent types and higher inductive types

• Do an analogous development for other formal systems and classes of
categories (categorical logic!)

3 Lambda Calculus Results



Thank you!

3 Lambda Calculus Results


	CCCs: An Algebraic Perspective
	The Simply-Typed Lambda Calculus
	Categorical Semantics
	Results

