[A]

Lambda Calculus

as The Internal Language of Cartesian Closed
Categories

Jacob Neumann
80-413/713 - November 2020



CCCs: An Algebraic Perspective



Terminal Objects

A is an object 1, such that for every object A of C,
there is a morphism !4 : A — 1

such that
forall f: A—1, f=!la

O Lambda Calculus CCCs: An Algebraic Perspective



Products
For each A, B, their is an object A X B with an operation
(—,—) : Hom(Z, A) x Hom(Z, B) — Hom(Z, A x B)
and maps p; : Ax B— A and py : A x B — B such that, for all f,g,h,
pio(f,9)=f

p2o(f.9) =g
(proh,psoh)=nh

O Lambda Calculus CCCs: An Algebraic Perspective



Exponentials

For all B, C), their is an object C'® equipped with an
operation

curry : Hom(A x B, C) — Hom(A, C?)
and a map € : C® x B — C such that for all u: A x B — C and all
v:A— CP,
eo ((curry u) X 1p) = u
curry(eo (v X 1)) = v

Recall v x 1 : A x B — CB x Bis (v o py,pa).

O Lambda Calculus CCCs: An Algebraic Perspective



Ch CPxB —~—— C
curry u (curry u)x1p

A Ax B

Note: the operation v — e o (v X 1) is a kind of “uncurrying”.

O Lambda Calculus CCCs: An Algebraic Perspective



Adjunction Definition

This definition is equivalent to the definition of exponentials as right
adjoints:
(=) x B (-)".
The required isomorphism is given by
curry : Hom(A x B,C) — Hom(A, C?)
uncurry : Hom(A, C*) — Hom(A x B, 0)

where uncurry(v) = eo (vopy,ps) =€o (v X 1p).

O Lambda Calculus CCCs: An Algebraic Perspective



¢ is the counit of the adjunction.

Recall that every adjunction L 4 R gives rise to a counit natural
transform € : L o R — lgom(p)
In the case of (—) x B - (—)?, this means

ec:CBxB—C

natural in C. This is the “evaluation” morphism for CZ.

Lambda Calculus CCCs: An Algebraic Perspective



Summary

Here, A, B, C, Z range over all objects of C

Structure Required Data Laws
Terminal Ih1:A—1 Forall k: A— 1, k=4
Object
Binary pr:AXB— A Forall f: Z > A, g:Z— B,
Products p2:AXB— B polf,g)=7f
(—,—) : Hom(Z, A) x Hom(Z, B) — peo(f,9)=g
Hom(Z, A x B) Forall h: Z — A x B,
h=(pioh,proh)
Exponentials ecc :CBxB—C Forallu: AxB—C,v:A— CB,
curry : Hom(A x B,C) — Hom(A, CB) eo((curry u) x 1) = u
curry(eo (v x 1)) =wv

O Lambda Calculus



The Simply-Typed Lambda Calculus



History & Motivation of the Lambda Calculus

The lambda calculus
Developed in 1930s by Alonzo Church as a mathematical model of
computation (prior to the existence of electronic computers).
Provably equivalent to other such notions (e.g. Turing machines)
Has “untyped” and “typed” variants
Theoretical basis of functional programming and type theory

1 Lambda Calculus The Simply-Typed Lambda Calculus



Lambda Abstraction

Lambda Calculus studies functions between , Which can be thought
of like sets. We denote “z is an element of 7" as x : T instead of z € T.

To define a function from T} to T5, it suffices to specify a rule assigning
to each x : T} some expression e : T, where the value of e, in general,
can depend on z.

()\xe) Ty — 15

This is the function which “accepts” x : T} and “returns” e : T5.

1 Lambda Calculus The Simply-Typed Lambda Calculus



General Setup

We'll build up a system of

T

We'll define , Which consist of several “typed variable

declarations”
In a context I, we'll form

In a context I, we'll prove

Lambda Calculus

of given types

between terms

The Simply-Typed Lambda Calculus



Types

To get started, we fix some set Ty, of , and recursively
generate the set of all types Ty from it.

T,T =T, (To € Tyy)
1 (Unit type)
| T x T (Product types)
| T — T (Arrow types)

1 Lambda Calculus The Simply-Typed Lambda Calculus



Contexts

For some variable name x and some T' € Ty, we can form the
x: T, read “x is of type T".

A ' is a finite list of typing judgments x; : 11, ..., z, : T,
[:= (Empty context)
| T,z T (Context Extension)

(We usually make some syntactic requirements on contexts, e.g. that all the variable names are distinct)

1 Lambda Calculus The Simply-Typed Lambda Calculus



General Setup

We'll build up a system of

T

We'll define , Which consist of several “typed variable

declarations”
In a context I, we'll form

In a context I, we'll prove

Lambda Calculus

of given types

between terms

The Simply-Typed Lambda Calculus



Term-Building Activities

Now recursively build up terms-in-context of these types. We write
I'=¢t:T

to indicate that ¢ is a term of type T' in context I'.
We may also have some basic terms t; € Tmy,, each of a specified
basic type. If ty € Tmy and is specified to be of type T, then

I'=ty: 1T for any I

* is always a term of type 1:
'Ex:1 for any I

1 Lambda Calculus The Simply-Typed Lambda Calculus



Term-Building

If "¢ : 77 and T' -ty 2 T,

LE(ti,te) : Th x T
If T p: Ty x T,

['Ffst(p) : Th and ['Fsnd(p) : T

f T x:T\Fe:T5,

I'F(Axe): Ty — T
fI'Ff:Ty —Tyand ' v : 17,

C'E(fov): T

1 Lambda Calculus The Simply-Typed Lambda Calculus



Rules of Lambda Calculus

Var.
Tz Tra T

F".TQITQ
F,xliTll_ﬂfgiTQ

(Weak.)

'=¢:T Fl_tlztg F}_tlztg Fl‘tgztg
'Ft=t TI'kFta=1 't =13

1 Lambda Calculus The Simply-Typed Lambda Calculus



Unit & Product Rules

'~w:1
'Fw=x%

Fl‘piT1XT2

' (fst(p), snd(p)) = p
Fl‘tliTl Fl_t2:T2 Fl‘tliTl Fl‘tg:Tg

I' = fSt(tl, tg) =1 '+ snd(tl, t2) = t2

1 Lambda Calculus The Simply-Typed Lambda Calculus



Beta & Eta

L' (A\zee): Ty = Ty o1
I'F (Ax.e)(v) = elv/x]

©)

Fl_fZTl—>T2
R ETAL

1 Lambda Calculus The Simply-Typed Lambda Calculus



Example

Claim 1 For any types 11,15, T5 and any context I', there exist terms in
context I’

'+ Sp“t : (Tl — Ty X Tg) — (Tl — T2> X (Tl — Tg)
'+ pair : (Tl — TQ) X (Tl — Tg) — (Tl — 15 X Tg)

such that

D, f: Ty — Ty x Ty = pair(split(f)) = f
Uygr: Ty — Th, g9 - Th — T3 F split(pair(g1, 92)) = (91, g2)

1 Lambda Calculus The Simply-Typed Lambda Calculus



Proof (sketch)
split := Af.(Ax.fst(f x), \x.snd(f z))

pair := Ap.Az.(fst(p)(z),snd(p)(x))

1 Lambda Calculus The Simply-Typed Lambda Calculus



Categorical Semantics



High-level idea

The preceding syntactic structure of types 1", contexts I', and
terms-in-context I' - x : T' is the , L.

“Interpret” L inside a cartesian closed category C, i.e. we want some
mapping’

[-]: £L—C
In particular, [77 and [I'] will be objects of C, and [I' - x : T will be a
morphism [['] — [T]. Goal:

['Fty =tyisprovable — [['F#;] =[TF o]

1[[f]] is actually a functor, if we view £ as a category in an appropriate way.

2

Lambda Calculus Categorical Semantics



Interpreting Types

T.T =T,
!
| T x T
| T — T

Define the interpretation of types, [—] : Ty — Ob(C).

We must supply [75] € Ob(C) for each Tj € Ty,
[1] = 1, the terminal object

[T1 x T3] = [T1] x [T2]

[[Tl — TQ]] = [[TQ]] [71]

2 Lambda Calculus Categorical Semantics

(To € Ty,)
(Unit type)
(Product types)
(Arrow types)



Interpreting Contexts

Recall that Ctx, the set of all contexts, is defined recursively by

[= (Empty context)
| T,z : T (Context Extension)

So define [—] : Ctx — Ob(C)
Interpret the empty context as 1, the terminal object
[T,z :T] =[] x [T]

2 Lambda Calculus Categorical Semantics



Interpreting Terms

To complete our interpretation of the lambda calculus, we must interpret
terms-in-context as morphisms of C. Specifically,

[CF¢:T]:[I] - [T]-

If to € Tmy is a basic term of type T{), we must pick
[D_ to : T()]] 1 — HT()]]
For any I, [I" = x : 1] =!ypy.

[T+ *:1] '~w:1
I[N —— 1] =1 _ -
[T [1] I'Cw=x%

2 Lambda Calculus Categorical Semantics



Structural Rules

Variable Rule: iiizzhening
I' - To . T2
F,ZC:T"SBZT F,x1:T1I—x2:T2

[[F"LL'QITQ]] X 'HT

[T] x [7] 25 7] [y < (o 22 ) < 1 = (1]

2 Lambda Calculus Categorical Semantics



Product Terms

[[F}—tl:Tl]] [[Tl]]
Tm
[r] -G o)
P
[[FFtQZTQ]] [[TZ]]

[[P = (tl,tz) : T1 X TQ]] = <[[F = t : Tl]], [[F = to : TQ]]>
[[Fl—fst(p):Tl]]:plo[[Fl—p:TleQ]]

2 Lambda Calculus Categorical Semantics



Product Rules

I' - p: T1 X T2
I' = (fst(p),snd(p)) = p

F}_tllTl F}_tQITQ Fl_tllTl Fl_t2:T2

I' = fSt(tl, tg) = tl I' = snd(tl, tz) = t2

2 Lambda Calculus Categorical Semantics



Arrows are Exponentials

Abstraction: want to fulfill
I'N'z:T\Fe:T
L (A\ze): Ty = Ty
i.e. given [I'] x [T1] — [13], define a morphism [I'] — [73]"1]
Application: want to fulfill
'Ef:177—=1T I'Fov:T)
CE(fv):Th

i.e. given [I'] — [73]!") and [I'] — [71], define a morphism
[[] = [72]

2 Lambda Calculus Categorical Semantics



A-Abstraction

[T5]17 [15]15) % [1Y] ———— [T3]

[TH(A\x.e): Ty —T5] [CF(\z.e):T1—=Ta] x 11y

[T,2:T ey

[T] [T,z : 1]
[C'F (Ax.e): Ty — T :==curry [[,x : Ty F e : Ty

2 Lambda Calculus Categorical Semantics



Application

[[TQ]] [1:]

IE

[THf:Th —T5]

([0 £1, [Ty
[T] =

[CE(fv): ] :=eo{[l'F f:Ty — T5],[T'Fov:Ti])

2 Lambda Calculus Categorical Semantics



Beta

If we define substitution in the appropriate way, the 5 rule

L' (A\ze): Ty = Ty I'ov:T
I'F (Az.e)(v) = efv/z]

©)

is valid for every interpretation of lambda calculus in any CCC, i.e.
[T'F (Ax.e)(v)] = [T F e[v/x]]. This usually involves proving a
“substitution lemma”.

2 Lambda Calculus Categorical Semantics



Eta

The 7 rule

I' = f : T1 — T2

F'E(\z.fx)= f(n)
is valid for all interpretations: [I' - Az.f x] = [I' - f].This is proved
using the universal property of exponentials.

Lambda Calculus Categorical Semantics



Results



Soundness

Thm. 1 (Soundness) For any CCC C and any interpretation
[—] : £ — C and any terms t1,t5 : T in context I, if we can deduce

I'Et =1
using the rules of lambda calculus, then

HF}_tlT]]:ﬂF’_tQT]]

Proof by induction on the deduction of I' - ¢; = t,.

3 Lambda Calculus Results



Isomorphism Corollary

Cor. 1.1 If 77 and 75 are types and in any context I' there exists terms
I'- F: T, — 15

'-G:T, =T}
such that
e FGF(@)=2 Ty ThtFGy)=y
then
[71] = [T2].

3 Lambda Calculus Results



Application

Cor 1.2 If Cis a CCC, [-] : £ — C, then for any types T1, T, T,
([T5] > [T = (] x [rs] ]

Proof : By Claim 1 and Cor 1.1.

3 Lambda Calculus Results



Language of a CCC

For any CCC C, we can define the , L(C), to be the
lambda calculus language

whose basic types are the objects of C
whose basic terms of type X are the morphisms 1 — X in C.

Define a canonical [—] : £(C) — C by interpreting each basic type and
term as itself.

Thm. 2 For any objects X, Y, Z of a cartesian closed category, there is

an isomorphism
(Y x 2)¥ 2y* x 7%

3 Lambda Calculus Results



Further Directions

Completeness: Prove that any equality which is valid in every CCC is
provable in the lambda calculus.

Duality: Show that the syntax of lambda calculus is — in a sense —

dual to its model theory
Add fancier stuff:

Initial object

Coproducts

Natural numbers object, and other inductive types
Dependent types and higher inductive types

Do an analogous development for other formal systems and classes of
categories (categorical logic!)

3 Lambda Calculus Results



Thank you!

Lambda Calculus Results



	CCCs: An Algebraic Perspective
	The Simply-Typed Lambda Calculus
	Categorical Semantics
	Results

