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Overview

• Study classical algebraic structures with the tools of category theory

• Study categorical structures in an algebraic framework

Some sources

• Chaps. 4 and 10 of textbook (might cover Chap. 10 in lecture)

• Categorical Logic notes by Awodey & Bauer

• Various nLab pages (group object, monoid in a monoidal category,
Eckmann-Hilton argument, endofunctor, Lawvere Theory, variety of
algebras,1 internalization, etc.)

1Not “algebraic varieties” – that’s something different.
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Monoids so far. . .

(Classical definition) A monoid consists of a set M , a binary operation
· : M ×M →M , and an element e ∈M such that

• For all x, y, z ∈M , (x · y) · z = x · (y · z)

• For all x ∈M , e · x = x = x · e
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Monoids so far. . .

• We have seen the category of monoids, Mon, whose objects are
monoids and whose morphisms are monoid homomorphisms

• We also saw that we could view monoids as single-object
categories, where the morphisms corresponded to the elements of
the monoid, and composition the binary operation

• And now. . .monoids in a category
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Internalization

A monoid consists of a set M , a function · : M ×M →M , and an
element e ∈M such that. . .

A monoid consists of an object M , a morphism · : M ×M →M , and
a morphism e : 1→M such that. . .
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Monoid Object

Given a category C with all finite products, a monoid in C consists of

• an object M of C
• a morphism µ : M ×M →M

• a morphism e : 1→M

M ×M 1

M

µ
e

such that. . .

• µ is associative

• e is a unit for µ
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Monoid Object

(M ×M)×M M × (M ×M)

M ×M M ×M

M

µ×1M 1M×µ

µ µ

1×M M ×M M × 1

M

e×1M

µ

1M×e
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Basic Examples

• Classical monoids: monoids in Set

• Ordered monoids: monoids in Pos

(R× R,≤) 1

(R,≤)

+
0

(a, b) ≤ (c, d)
def⇐⇒ a ≤ c and b ≤ d =⇒ a+ b ≤ c+ d
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More Examples

• If a poset (P,≤) has finite meets and a maximal element, then this is
a monoid in the category of posets:
I ∧ : P × P → P such that (p, q) ≤ (r, s) =⇒ p ∧ q ≤ r ∧ s
I > : 1→ P
I p ∧ (q ∧ r) = (p ∧ q) ∧ r
I p ∧ > = p = > ∧ p

• A monoid in Group, the category of groups and group
homomorphisms, is a ring.
• Comonoids in C are monoids in Cop:

I µ :M →M ×M
I e :M → 1
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Monoids in Presheaves

Recall that for any C, the category Ĉ = Hom(Cop, Set) of presheaves on
C is cartesian:

• Terminal object of Ĉ is the constant functor ∆1 (which sends each
object to 1 = {?} and each morphism to 11)

• For F,G : Cop → Set, define F ×G to be the presheaf sending x to
F (x)×G(x) and u : x→ y to (Fu×Gu) : (Fy×Gy)→ (Fx×Gx)

F × F ∆1

F

µ
e
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Monoids in Presheaves

F × F ∆1

F

µ
e

• For each object x of C,

µx : (Fx)× (Fx)→ Fx

ex : 1→ Fx

• Naturality: for all u : x→ y in C
µx ◦ (F (u)× F (u)) = F (u) ◦ µy ex = F (u) ◦ ey
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Some Examples

• A monoid M in Set[1]
op

is a monoid homomorphism M(u) between
the monoids (M1, µ1, e1) and (M0, µ0, e0).

• A monoid M in SetI
op

for any set I viewed as a discrete category is
just an I-indexed family of monoids {(M(i), µi, ei)}i∈I
• A monoid M in Set(N,≤) = Set(N,≥)

op

is a sequence {(Mi, µi, ei)}i∈N
of monoids with monoid homomorphisms fi : Mi→M(i+ 1)
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Groups (classical definition)

A group consists of a set G, a binary operation · : G×G→ G, an
element e ∈ G, and an operation (−)−1 : G→ G such that

• For all x, y, z ∈ G, (x · y) · z = x · (y · z)

• For all x ∈ G, e · x = x = x · e
• For all x ∈ G, x · x−1 = e = x−1 · x

Equivalently: A group is a monoid where every element has an inverse
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Category of Groups

A group homomorphism from G to H is a function f : G→ H such
that

f(x ·G y) = f(x) ·H f(y) for all x, y ∈ G

Exercise The category, Group, of groups and group homomorphisms is a
full subcategory of Mon.
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Groups as Categories

We also had a way of viewing groups as singleton category. Equivalently:

• A group is a monoid (viewed as a singleton category) where all
morphisms are isomorphisms

• A group is a groupoid with one object
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Group Object

Given a category C with all finite products, a group in C consists of

• an object G of C
• a morphism µ : G×G→ G

• a morphism e : 1→ G

• a morphism i : G→ G

G×G 1 G

G

µ
e

i

1 Monoid and Group Objects Groups and Categories



Group in a category

(G×G)×G G× (G×G)

G×G G×G

G

µ×1G 1G×µ

µ µ

1×G G×G G× 1

G

e×1G

µ

1G×e
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Group in a category

G×G G G×G

G×G G G×G

1G×i

〈1G,1G〉〈1G,1G〉

e◦!G i×1G

µ µ
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Basic Examples

• Groups in Set: classical groups

• Groups in Top: topological groups

µ : X ×X → X

continuous with respect to the topology on X and the product
topology on X ×X, and

(−)−1 : X → X

continuous.

1 Monoid and Group Objects Groups and Categories



Functor Group

If C,D are categories and D has all finite products, then the functor
category DC has finite products:

• (F ×G)(x) = Fx×Gx
• (F ×G)(u : x→ y) = (Fu×Gu) : (Fx×Gx)→ (Fy ×Gy)

A group in DC consists of
• A functor F

I For each x ∈ C, a set Fx
I For each u : x→ y in C, a function Fu : Fx→ Fy

• For each x ∈ C, a function µx : Fx× Fx→ Fx
• For each x ∈ C, an element ex ∈ Fx
• For each x ∈ C, an operation ix : Fx→ Fx
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Morphisms on Two Levels

• If (F, µ, e, i) is a group in DC and u : x→ y is a morphism in C, then
F (u) : F (x)→ F (y) is a group homomorphism between the groups
(Fx, µx, ex, ix) and (Fy, µy, ey, iy):

Fx× Fx Fx

Fy × Fy Fy

µx

Fu×Fu F (u)

µy

(also ey = F (u) ◦ ex and iy ◦ F (u) = F (u) ◦ ix)
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Morphisms on Two Levels

• If (F, µ, e, i) and (F ′, µ′, e′, i′) are groups in DC and θ : F → F ′ a
natural transformation such that

µ′ ◦ (θ × θ) = θ ◦ µ
e′ = θ ◦ e

i′ ◦ θ = θ ◦ i

Then each component θx : F (x)→ F ′(x) is a group homomorphism.
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2 Some Theory



Category of groups in a category

Let C be any cartesian category. Define Group(C) to be the category

• Whose objects are groups (G, µ, e, i) in C
• Whose morphisms f : (G, µ, e, i)→ (G′, µ′, e′, i′) are morphisms
f : G→ G′ in C which commute with the group structure:

G×G G

G′ ×G′ G′

µ

f×f f

µ′

1 G

1 G′

e

11 f

e′

G G

G′ G′

i

f f

i′

Group = Group(Set)
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The evaluation functor

Group
(
SetC

)
= ?

A minute ago, we saw that for any (F, µ, e, i) ∈ Group
(
DC) and any

x ∈ C, the object Fx ∈ D had a group structure on it given by µx, ex
and ix.

ev : Group(SetC)→ GroupC

ev(F ) : C→ Group

: x 7→ ev(F, x) = (Fx, µx, ex, ix)

: (u : x→ y) 7→ Fu ∈ HomGroup(Fx, Fy)

ev(θ : F → F ′) : ev(F )→ ev(F ′)

ev(θ)x = θx ∈ HomGroup(Fx, F
′x)
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When life gives you lemmas. . .

Lemma ev is faithful

Lemma ev is full

Lemma ev is a bijection on objects

Group
(
SetC

) ∼= GroupC

Group
(
Ĉ
)
∼= GroupCop

Mon
(
SetC

) ∼= MonC

“A group in presheaves is a presheaf of groups”
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Monoids in Mon? Groups in Group?

What about Mon(Mon) or Group(Group)?

M ×M 1 1 M ×M

(M, ·, e·)
(−·−)

e· e?

(−?−)

(w · x) ? (y · z) = (w ? y) · (x ? z)
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The Eckmann-Hilton Argument

Thm If ((M, ·, e·), ?, e?) is a monoid in Mon, then e· = e?, · and ? are
equal, and (M, ·, e·) is commutative:

x · y = y · x for all x, y ∈M .

Proof

• e? : {∗} → (M, ·, e·) must be a monoid homomorphism, so e? = e·.
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The Eckmann-Hilton Argument

Proof (cont.)

• e? : {∗} → (M, ·, e·) must be a monoid homomorphism, so e? = e·.
Write e = e· = e?.

• Then, for any x, y ∈M

x · y = (x ? e) · (e ? y) (e = e?)

= (x · e) ? (e · y) (? is a homomorphism)

= x ? y
• For any x, y ∈M ,

x · y = (1 · x) · (y · 1) = (1 · y) · (x · 1) = y · x
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Result

Defn. A monoid (resp. group) X is said to be commutative (resp.
abelian) if for all x, y ∈ X, x · y = y · x. The full subcategory of
commutative monoids (resp. abelian groups) is denoted CMon (resp.
Ab).

• Mon(Mon) ∼= CMon

• Group(Group) ∼= Ab

• Mon(CMon) ∼= CMon

• Group(Ab) ∼= Ab
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If it looks like a functor and smells like a functor. . .

• Monoid objects and group objects are defined by a diagram
• Diagrams are functors

(M ×M)×M M × (M ×M)

1×M M ×M M × 1

M ×M M ×M

M
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Functorial Semantics

An algebraic theory T specifies some collection of data (sets, constants,
functions, etc.) and some equations. For instance, the theory of abelian
groups:

• Four pieces of data (G, µ, e, and i)
• Four equations (the associativity, identity, inverse, and commutative

laws).

A model of T in a finite product category C consists of objects &
morphisms of C interpreting T, such that all of T’s equations come out
as true. For instance, a model of TMon (the theory of monoids) in C is a
monoid object in C.
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Functorial Semantics

For any algebraic theory T, there is a finite product category CT called
the syntactic category of T such that

Mod (T,C) ∼= HomFP(CT,C)

Thm The following are equivalent:

1 For every model M of T in C, M |= s = t

2 T ` s = t
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To learn more about functorial semantics,

take categorical logic!
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Monoidal Categories

Another possible generalization: we can define monoid objects in
categories which do not have finite products.

A category C is called monoidal if it is equipped with a functor
⊗ : C× C→ C and I ∈ C which “behave like × and 1”:

• X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y )⊗ Z
• X ⊗ I ∼= X

• . . .
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Monoidal monoid

(M ⊗M)⊗M M ⊗ (M ⊗M)

I ⊗M M ⊗M M ⊗ I

M ⊗M M ⊗M

M

µ⊗1M 1M⊗µe⊗1M

µ

1M⊗e

µ µ
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Example: the category of endofunctors

The category End(C) = CC does not – in general – have finite products.
But it is monoidal under composition, with unit idC:

• F ◦ (G ◦H) = (F ◦G) ◦H for all F,G,H : C→ C
• F ◦ idC = F

• . . .
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Monoids in the category of endofunctors

Claim Every adjunction C D
F

U

a gives rise to a monad (a monoid in

End(C))

• The object is UF ∈ End(C)

• For each C ∈ C, we have the counit εFC : FUFC → FC and thus

U(εF (−)) : UF ◦ UF → UF

• The unit of the adjunction:

η : idC → UF

• Can check that the monoid laws are satisfied
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Example of a monad: List

If F : Set→ Mon is the free monoid functor, and U : Mon→ Set is its
right adjoint, the forgetful functor, we’ll write List for the composition
U ◦ F .

List(A) = {[a1, . . . , an] : n ∈ N and a1, . . . , an ∈ A}

• µA : List(List(A))→ List(A) concatenates lists of lists:

µZ[[1, 2, 3], [ ], [4], [5, 6]] = [1, 2, 3, 4, 5, 6]

• ηA : A→ List(A) creates singleton lists

ηZ(4) = [4]

3 Monoid and Group Objects Generalizations



Thank you!
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