

Monoid and Group Objects

A Taste of Algebraic Theories in Categorical Logic

Jacob Neumann 80-413/713 - November 2020

Overview

Study classical algebraic structures with the tools of category theoryStudy categorical structures in an algebraic framework

Some sources

- Chaps. 4 and 10 of textbook (might cover Chap. 10 in lecture)
- Categorical Logic notes by Awodey & Bauer
- Various nLab pages (group object, monoid in a monoidal category, Eckmann-Hilton argument, endofunctor, Lawvere Theory, variety of algebras,¹ internalization, etc.)

¹Not "algebraic varieties" – that's something different.

0 Monoids and Categories

- (Classical definition) A monoid consists of a set M, a binary operation $\cdot : M \times M \to M$, and an element $e \in M$ such that
 - For all $x, y, z \in M$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - For all $x \in M$, $e \cdot x = x = x \cdot e$

We have seen the category of monoids, Mon, whose objects are monoids and whose morphisms are monoid homomorphisms
We also saw that we could view monoids as single-object categories, where the morphisms corresponded to the elements of the monoid, and composition the binary operation
And now...monoids in a category

Internalization

A monoid consists of a set M, a function $\cdot : M \times M \to M$, and an element $c \in M$ such that...

A monoid consists of an object M, a morphism $\cdot : M \times M \to M$, and a morphism $e : 1 \to M$ such that...

Monoid Object

Given a category \mathbb{C} with all finite products, a monoid in \mathbb{C} consists of • an object M of \mathbb{C}

- a morphism $\mu: M \times M \to M$
- a morphism $e: 1 \to M$

n

Monoid Object

Basic Examples

Classical monoids: monoids in SetOrdered monoids: monoids in Pos

 $(a,b) \leq (c,d) \quad \stackrel{\text{def}}{\iff} \quad a \leq c \text{ and } b \leq d \quad \Longrightarrow \quad a+b \leq \overline{c+d}$

0

Monoid and Group Objects

Monoids and Categories

More Examples

 If a poset (P, ≤) has finite meets and a maximal element, then this is a monoid in the category of posets:

- $\blacktriangleright \ \land : P \times P \to P \text{ such that } (p,q) \leq (r,s) \implies p \ \land \ q \leq r \ \land \ s$
- $\blacktriangleright \ \top : 1 \to P$

$$\blacktriangleright \ p \ \land \ (q \ \land \ r) = (p \ \land \ q) \ \land \ r$$

 $\blacktriangleright \ p \ \land \ \top = p = \top \ \land \ p$

A monoid in Group, the category of groups and group homomorphisms, is a ring.
Comonoids in C are monoids in C^{op}:
μ: M → M × M

 $\blacktriangleright \ e: M \to 1$

Monoids in Presheaves

Recall that for any \mathbb{C} , the category $\hat{\mathbb{C}} = Hom(\mathbb{C}^{op}, Set)$ of presheaves on \mathbb{C} is cartesian:

- Terminal object of Ĉ is the constant functor Δ1 (which sends each object to 1 = {*} and each morphism to 1₁)
- For $F, G : \mathbb{C}^{op} \to \text{Set}$, define $F \times G$ to be the presheaf sending x to $F(x) \times G(x)$ and $u : x \to y$ to $(Fu \times Gu) : (Fy \times Gy) \to (Fx \times Gx)$

Monoids in Presheaves

• For each object
$$x$$
 of $\mathbb C$,

$$\mu_x : (Fx) \times (Fx) \to Fx$$

$$e_x : 1 \to Fx$$
• Naturality: for all $u : x \to y$ in \mathbb{C}

$$\mu_x \circ (F(u) \times F(u)) = F(u) \circ \mu_y \qquad e_x = F(u) \circ e_y$$

Monoids and Categories

Some Examples

- A monoid M in $\operatorname{Set}^{[1]^{\operatorname{op}}}$ is a monoid homomorphism M(u) between the monoids $(M1, \mu_1, e_1)$ and $(M0, \mu_0, e_0)$.
- A monoid M in $\operatorname{Set}^{I^{\operatorname{op}}}$ for any set I viewed as a discrete category is just an I-indexed family of monoids $\{(M(i), \mu_i, e_i)\}_{i \in I}$
- A monoid M in $Set^{(\mathbb{N},\leq)} = Set^{(\mathbb{N},\geq)^{op}}$ is a sequence $\{(Mi, \mu_i, e_i)\}_{i\in\mathbb{N}}$ of monoids with monoid homomorphisms $f_i: Mi \to M(i+1)$

1 Groups and Categories

Groups (classical definition)

A group consists of a set G, a binary operation $\cdot : G \times G \to G$, an element $e \in G$, and an operation $(-)^{-1} : G \to G$ such that

- For all $x, y, z \in G$, $\overline{(x \cdot y) \cdot z} = x \cdot (y \cdot z)$
- For all $x \in G$, $e \cdot x = x = x \cdot e$
- For all $x \in G$, $x \cdot x^{-1} = e = x^{-1} \cdot x$

Equivalently: A group is a monoid where every element has an inverse

Category of Groups

A group homomorphism from G to H is a function $f: G \to H$ such that

$$f(x \cdot_G y) = f(x) \cdot_H f(y)$$
 for all $x, y \in G$

Exercise The category, Group, of groups and group homomorphisms is a full subcategory of Mon.

Monoid and Group Objects

We also had a way of viewing groups as singleton category. Equivalently:
A group is a monoid (viewed as a singleton category) where all morphisms are isomorphisms

• A group is a groupoid with one object

Group Object

Given a category \mathbb{C} with all finite products, a group in \mathbb{C} consists of • an object G of \mathbb{C}

- a morphism $\mu: G \times G \to G$
- a morphism $e: 1 \rightarrow G$
- a morphism $i: G \to G$

Group in a category

Group in a category

Basic Examples

Groups in Set: classical groupsGroups in Top: topological groups

 $\mu: X \times X \to X$

continuous with respect to the topology on X and the product topology on $X\times X,$ and

 $(-)^{-1}: X \to X$

continuous.

Functor Group

If \mathbb{C}, \mathbb{D} are categories and \mathbb{D} has all finite products, then the functor category $\mathbb{D}^{\mathbb{C}}$ has finite products:

•
$$(F \times G)(x) = Fx \times Gx$$

• $(F \times G)(u : x \to y) = (Fu \times Gu) : (Fx \times Gx) \to (Fy \times Gy)$

A group in $\mathbb{D}^{\mathbb{C}}$ consists of • A functor F

For each $x \in \mathbb{C}$, a set Fx

▶ For each $u: x \to y$ in \mathbb{C} , a function $Fu: Fx \to Fy$

- For each $x \in \mathbb{C}$, a function $\mu_x : Fx \times Fx \to Fx$
- For each $x \in \mathbb{C}$, an element $e_x \in Fx$
- For each $x \in \mathbb{C}$, an operation $i_x : Fx \to Fx$

Morphisms on Two Levels

• If (F, μ, e, i) is a group in $\mathbb{D}^{\mathbb{C}}$ and $u : x \to y$ is a morphism in \mathbb{C} , then $F(u) : F(x) \to F(y)$ is a group homomorphism between the groups (Fx, μ_x, e_x, i_x) and (Fy, μ_y, e_y, i_y) :

$$\begin{array}{ccc} Fx \times Fx & \xrightarrow{\mu_x} & Fx \\ Fu \times Fu & & \downarrow F(u) \\ Fy \times Fy & \xrightarrow{\mu_y} & Fy \end{array}$$

(also $e_y = F(u) \circ e_x$ and $i_y \circ F(u) = F(u) \circ i_x$)

Morphisms on Two Levels

• If (F, μ, e, i) and (F', μ', e', i') are groups in $\mathbb{D}^{\mathbb{C}}$ and $\theta: F \to F'$ a natural transformation such that

$$\mu' \circ (\theta imes heta) = heta \circ \mu$$
 $e' = heta \circ e$
 $i' \circ heta = heta \circ i$

Then each component $\theta_x : F(x) \to F'(x)$ is a group homomorphism.

Category of groups in a category

Let $\mathbb C$ be any cartesian category. Define ${\rm Group}(\mathbb C)$ to be the category \bullet Whose objects are groups (G,μ,e,i) in $\mathbb C$

• Whose morphisms $f: (G, \mu, e, i) \rightarrow (G', \mu', e', i')$ are morphisms $f: G \rightarrow G'$ in \mathbb{C} which commute with the group structure:

$\mathsf{Group} = \mathsf{Group}(\mathsf{Set})$

The evaluation functor

 $\mathsf{Group}\left(\mathsf{Set}^{\mathbb{C}}\right) = ?$

A minute ago, we saw that for any $(F, \mu, e, i) \in \text{Group}(\mathbb{D}^{\mathbb{C}})$ and any $x \in \mathbb{C}$, the object $Fx \in \mathbb{D}$ had a group structure on it given by μ_x , e_x and i_x .

 $\begin{array}{c} \mathsf{ev}:\mathsf{Group}(\mathsf{Set}^{\mathbb{C}}) \to \mathsf{Group}^{\mathbb{C}}\\ \mathsf{ev}(F):\mathbb{C} \to \mathsf{Group}\\ :x \mapsto \mathsf{ev}(F,x) = (Fx,\mu_x,e_x,i_x)\\ :(u:x \to y) \mapsto Fu \in \mathsf{Hom}_{\mathsf{Group}}(Fx,Fy)\\ \mathsf{ev}(\theta:F \to F'):\mathsf{ev}(F) \to \mathsf{ev}(F')\\ \mathsf{ev}(\theta)_x = \theta_x \in \mathsf{Hom}_{\mathsf{Group}}(Fx,F'x) \end{array}$

Some Theory

When life gives you lemmas...

Lemma ev is faithful

Lemma ev is full

Lemma ev is a bijection on objects

$$\begin{array}{l} \mathsf{Group}\left(\mathsf{Set}^{\mathbb{C}}\right)\cong\mathsf{Group}^{\mathbb{C}}\\ \mathsf{Group}\left(\hat{\mathbb{C}}\right)\cong\mathsf{Group}^{\mathbb{C}^{\mathsf{op}}}\\ \mathsf{Mon}\left(\mathsf{Set}^{\mathbb{C}}\right)\cong\mathsf{Mon}^{\mathbb{C}}\end{array}$$

"A group in presheaves is a presheaf of groups"

Monoids in Mon? Groups in Group?

What about Mon(Mon) or Group(Group)?

Some Theory

The Eckmann-Hilton Argument

Thm If $((M, \cdot, e_{\cdot}), \star, e_{\star})$ is a monoid in Mon, then $e_{\cdot} = e_{\star}$, \cdot and \star are equal, and (M, \cdot, e_{\cdot}) is commutative:

$$x \cdot y = y \cdot x$$
 for all $x, y \in M$.

Proof

• $e_{\star}: \{*\} \rightarrow (M, \cdot, e_{\cdot})$ must be a monoid homomorphism, so $e_{\star} = e_{\cdot}$.

The Eckmann-Hilton Argument

Proof (cont.) • $e_{\star}: \{*\} \to (M, \cdot, e)$ must be a monoid homomorphism, so $e_{\star} = e_{\star}$. Write $e = e_{\star} = e_{\star}$. • Then, for any $x, y \in M$ $x \cdot y = (x \star e) \cdot (e \star y)$ $(e = e_{\star})$ $= (x \cdot e) \star (e \cdot y)$ $(\star is a homomorphism)$ $= x \star y$ For any $x, y \in M$,

$$x \cdot y = (1 \cdot x) \cdot (y \cdot 1) = (1 \cdot y) \cdot (x \cdot 1) = y \cdot x$$

Result

Defn. A monoid (resp. group) X is said to be commutative (resp. abelian) if for all $x, y \in X$, $x \cdot y = y \cdot x$. The full subcategory of commutative monoids (resp. abelian groups) is denoted CMon (resp. Ab).

- $Mon(Mon) \cong CMon$
- $Group(Group) \cong Ab$
- $Mon(CMon) \cong CMon$
- $Group(Ab) \cong Ab$

If it looks like a functor and smells like a functor...

Monoid objects and group objects are defined by a diagramDiagrams are functors

Functorial Semantics

An algebraic theory \mathbb{T} specifies some collection of data (sets, constants, functions, etc.) and some equations. For instance, the theory of abelian groups:

- Four pieces of data (G, μ , e, and i)
- Four equations (the associativity, identity, inverse, and commutative laws).

A model of \mathbb{T} in a finite product category \mathbb{C} consists of objects & morphisms of \mathbb{C} interpreting \mathbb{T} , such that all of \mathbb{T} 's equations come out as true. For instance, a model of \mathbb{T}_{Mon} (the theory of monoids) in \mathbb{C} is a monoid object in \mathbb{C} .

Functorial Semantics

For any algebraic theory \mathbb{T} , there is a finite product category $\mathcal{C}_{\mathbb{T}}$ called the syntactic category of \mathbb{T} such that

 $\mathsf{Mod}\,(\mathbb{T},\mathbb{C})\cong\mathsf{Hom}_{\mathsf{FP}}(\mathcal{C}_{\mathbb{T}},\mathbb{C})$

Thm The following are equivalent: 1 For every model M of \mathbb{T} in \mathbb{C} , $M \models s = t$ 2 $\mathbb{T} \vdash s = t$

To learn more about functorial semantics, take categorical logic!

Monoidal Categories

Another possible generalization: we can define monoid objects in categories which do not have finite products.

A category \mathbb{C} is called monoidal if it is equipped with a functor $\otimes : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ and $I \in \mathbb{C}$ which "behave like \times and 1": • $X \otimes (Y \otimes Z) \cong (X \otimes Y) \otimes Z$ • $X \otimes I \cong X$

• • • •

Monoidal monoid

3

Generalizations

Example: the category of endofunctors

The category $\text{End}(\mathbb{C}) = \mathbb{C}^{\mathbb{C}}$ does not – in general – have finite products. But it is monoidal under composition, with unit $\text{id}_{\mathbb{C}}$:

- $F \circ (G \circ H) = (F \circ G) \circ H$ for all $F, G, H : \mathbb{C} \to \mathbb{C}$
- $F \circ \mathsf{id}_{\mathbb{C}} = F$

• . . .

Monoids in the category of endofunctors

Claim Every adjunction $\mathbb{C} \xrightarrow[U]{\perp}{U} \mathbb{D}$ gives rise to a monad (a monoid in $\operatorname{End}(\mathbb{C})$)

- The object is $UF \in \mathsf{End}(\mathbb{C})$
- For each $C \in \mathbb{C}$, we have the counit $\epsilon_{FC} : FUFC \to FC$ and thus

 $U(\epsilon_{F(-)}): UF \circ UF \to UF$

• The unit of the adjunction:

• Can check that the monoid laws are satisfied

Example of a monad: List

If $F : \text{Set} \to \text{Mon}$ is the free monoid functor, and $U : \text{Mon} \to \text{Set}$ is its right adjoint, the forgetful functor, we'll write List for the composition $U \circ F$.

$$\mathsf{List}(A) = \{ [a_1, \dots, a_n] : n \in \mathbb{N} \text{ and } a_1, \dots, a_n \in A \}$$

μ_A: List(List(A)) → List(A) concatenates lists of lists: μ_ℤ[[1,2,3],[],[4],[5,6]] = [1,2,3,4,5,6]
η_A: A → List(A) creates singleton lists η_ℤ(4) = [4]

Thank you!