
Category Theory (80-413/713) F20 HW9, Exercise 5 Solution

Jacob Neumann, November 2020

Problem:

Let I be a small category, and ∆ : Set → SetI be the constant diagram functor. Prove
that ∆ is fully faithful iff colimi ∆1 = 1.

Solution:
1

First, note the form of this problem: we have two statements – (a) ∆ is fully faithful,
and (b) colimi ∆1 = 1 – which we’re proving equivalent. As we’ll see going through the
proof, (a) appears much stronger than (b), and the proof of (a) =⇒ (b) will be quick.
Indeed, we’ll see that (a) is a universal statement, and (b) just a single instance of (a).
The difficulty of this proof is showing that (b) – which is a “local” property of just one
particular set, 1 – is “universal” in the appropriate sense. Specifically, we’ll have to
show that colimi ∆1 = 1 implies εX : colimi ∆X ∼= X for all X.

2
Let’s dispense with (a) =⇒ (b). Recall from lecture:

Fact 1 U is fully faithful iff ε is a natural iso (For any adjunction F a U)

Therefore, since ∆ is a fully faithful right adjoint, the counit εX : colimi ∆X → X
is an isomorphism (that is, a bijection) for all sets X. So, in particular,

ε1 : colim
i

∆1
∼−→ 1.

Conclude that colimi ∆1 is a singleton set, i.e. a terminal object of Set. As usual, we
suppress the distinction between uniquely isomorphic objects, so

colim
i

∆1 = 1.

3
(b) =⇒ (a) is significantly more involved. Start with the naturality of ε: for all functions
f : A→ B, the square

colimi ∆A A

colimi ∆B B

colimi ∆(f)

εA

f

εB

commutes. Recall 1 that we define colimi ∆(f) by taking the maps

∆(A)(j) ∆(B)(j) colimi ∆B
(∆f)j inc∆B

j

for each object j of I, and then combining them together using the “co-pairing”
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operation of colimits: 2[
inc∆B

j ◦ (∆f)j | j ∈ I
]

: colim
i

∆A→ colim
i

∆B.

But ∆(A)(j) is just A by definition of ∆, and likewise for B. And the j-component
of the natural transform ∆f : ∆A → ∆B is just f , for each j. So we can state the
naturality of ε as

Nat. ε f ◦ εA = εB ◦ [inc∆B
j ◦ f ] (For all f : A→ B)

4
Let’s combine this with a useful fact about coproducts in Set. 3 Specifically this:

Fact 2
∐

x∈X 1 = X (For all sets X)

If you spell out the details of this fact, you’ll see that it basically involves defining
another constant functor ∆X : Set → SetX where ∆X(Y )(x) = Y for all x ∈ X and all
sets Y , and then proving that X satisfies the universal mapping property of the colimit
over the diagram ∆X(1). Note that for each x ∈ X the inclusion map

inc∆X(1)
x : ∆X(1)(x)→ X

is just the element x : 1→ X. 4

So for any set X and any x ∈ X, apply Nat. ε to x : 1→ X:

colimi ∆1 1

colimi ∆X X

colimi ∆(x)

ε1

x

εX

Now we’ll use the fact that colimi ∆1 = 1 (hence ε1 must be the identity on 1) to collapse
this square into a triangle:

1

colimi ∆X X

colimi ∆(x)
x

εX
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5
Now recall we had the triangle above for every x ∈ X, hence we have

1

colimi ∆X X

1

colimi ∆(x)
x

εX

colimi ∆(x′)

x′

But recall Fact 2 : X is the coproduct of X-many copies of 1, where the inclusion maps
are the elements of X:

1

X colimi ∆X X

1

xx

[colimi ∆(x) | x∈X]

εX

x′x′

From this picture, it’s quick to prove that ε−1
X = [colimi ∆(x)] is a right inverse for εX :

for any element x : 1→ X, we know that

x = εX ◦ ε−1
X ◦ x

and thus εX ◦ ε−1
X = idX. 5

If we could prove that ε−1
X is a left inverse for εX , we would be done. But this proves

difficult to do directly. Instead we’ll adopt a slightly different approach: 6 we’ll
show that ε−1

X is an isomorphism by other means, and then, since we just showed that
εX ◦ ε−1

X is an isomorphism (idX), we’ll have that εX is an iso by the 3-for-2 property
of isomorphisms. 7

X colimi ∆X

X

ε−1
X

εX

6
If we view 8 ε−1

X as a morphism 9
∐

x colimi 1→ colimi

∐
x 1 and unfold the definition
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of ε−1
X , we get:

ε−1
X =

[
colim

i
∆(x) | x ∈ X

]
=
[[
inc∆X

j ◦ (∆x)j | j ∈ I
]
| x ∈ X

]
=
[[
inc∆X

j ◦ x | j ∈ I
]
| x ∈ X

]
(Defn of ∆)

=
[[
inc∆X

j ◦ inc∆X(1)
x | j ∈ I

]
| x ∈ X

]
(Defn of inc∆X(1))

But on Homework 6, Exercise 4 we proved that
∐

x colimi 1 is isomorphic to colimi

∐
x 1,

and this is exactly the isomorphism witnessing that fact 10 . So ε−1
X is an iso, and,

as mentioned above, this gives us that εX is an iso. Since X was arbitrary, we get that
ε is a natural isomorphism and, by Fact 1 , ∆ is fully faithful.

Notes:

1 I’ll be needing this fact later, so might as well mention it now

2 Recall that if zi : X(i)→ Z is a cocone on a diagram X with apex Z, then [zi | i ∈ I]
is the unique map colimiX(i)→ Z making all the triangles commute.

3 If you know one of the categories you’re working with is Set, then don’t hesitate to use
the features of Set to solve the problem (it might be necessary to). As far as possible,
I’d encourage you to try to stick to category-theoretic properties of Set (i.e. statements

like Fact 2 which are phrased in terms of mappings and universal constructions – in
this case, a coproduct – rather than anything too “nitty-gritty” about sets and the ∈
relation.

4 Though I try to be careful about when I’m using x as an element of X and when I’m
viewing it as a morphism 1 → X, there isn’t actually much of a distinction. Not only
are the morphisms 1 → X in canonical bijection with the elements of X, but they
characterize the categorical behavior of X as an object of Set: if f, g : X → Y are
functions and

f ◦ x = g ◦ x
for all x : 1→ X, then f = g. This is just a categorical formulation of the principle of
function extensionality.

5 I’m using here the extensionality principle outlined in 4 . If I had shown that f◦h = g◦h
for some f, g, h, that would not imply f = g in general. I’m allowed to conclude that
here because the h I proved it for was an arbitrary element 1→ X, i.e. for all x ∈ X.

6 Sometimes workarounds like this will save you a lot of tedious morphism algebra. After
all, I don’t care what exactly the inverse of εX is (though it’s nice to know that it’s the
ε−1
X given), I just care that εX has an inverse. Of course, since we showed that ε−1

X is a
right inverse for εX and we’ll show that εX is an iso, we could then confirm that ε−1

X is
the inverse of εX by uniqueness of inverses.

7 You proved this on the first homework. The 3-for-2 property is not unique to isomor-
phisms, and indeed many of the notions of equivalence we care about exhibit a 3-for-2
property. It comes in handy often, like here.
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8 Since I’m viewing colimi ∆1 = 1, I can use the maps colimi ∆1 is known to have (e.g.
its colimit inclusion maps) as maps into 1, and vice versa. Similarly with viewing∐

x 1 = X.

9 Notice here that I suppress reference to ∆. Writing colimi 1 means colimi ∆1, and
∐

x 1
means

∐
x ∆X(1). Since ∆ has constant value, it’s justified to instead just write that

value inside the colimit. I’m doing that here because the ∆s would only serve to clutter
the notation.

10 This part wasn’t too explicitly part of the HW6 solutions, so let me mention it. Suppose
we have a category C with all I-shaped and J-shaped colimits, for some small I, J . Then
if we have a diagram X : I × J → C, write

• inc1
i0,j0

for the colimit inclusion X(i0, j0)→ colimiX(i, j0)

• inc2
i0,j0

for the colimit inclusion X(i0, j0)→ colimj X(i0, j)

• inci0 for the colimit inclusion colimj X(i0, j)→ colimi colimj X(i, j)

• incj0 for the colimit inclusion colimiX(i, j0)→ colimj colimiX(i, j)

So then we have:[[
inci ◦ inc2

i,j | i ∈ I
]
| j ∈ J

]
: colim

j
colim

i
X(i, j)→ colim

i
colim

j
X(i, j) (?)[[

incj ◦ inc1
i,j | j ∈ J

]
| i ∈ I

]
: colim

i
colim

j
X(i, j)→ colim

j
colim

i
X(i, j) (??)

The first of these is constructed as follows: note that

inci ◦ inc2
i,j : X(i, j)→ colim

i
colim

j
X(i, j)

These maps form a cocone over X(−, j), so we can pair them up along I:[
inci ◦ inc2

i,j | i ∈ I
]

: colim
i

X(i, j)→ colim
i

colim
j

X(i, j)

But these maps form a cocone over colimiX(i,−), so we can pair them up along J :[[
inci ◦ inc2

i,j | i ∈ I
]
| j ∈ J

]
: colim

j
colim

i
X(i, j)→ colim

i
colim

j
X(i, j).

Giving us the map (?). We wish to show that the maps given in (?) and (??) are
mutually inverse, and are therefore isomorphisms.

Now, observe: [[
inci ◦ inc2

i,j

]]
◦
[[
incj ◦ inc1

i,j

]]
=
[[[

inci ◦ inc2
i,j

]]
◦
[
incj ◦ inc1

i,j

]]
( Left Compose )

=
[[[[

inci ◦ inc2
i,j

]]
◦ incj ◦ inc1

i,j

]]
( Left Compose )

=
[[[

inci ◦ inc2
i,j

]
◦ inc1

i,j

]]
( Cocone Triangle )

=
[[
inci ◦ inc2

i,j

]]
( Cocone Triangle )

=
[[
inci ◦ inc2

i,j | j ∈ J
]
| i ∈ I

]
(*)
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Here, Left Compose is the fact that f ◦ [zk | k ∈ K] = [f ◦ zk | k ∈ K] for any

suitably-typed K, zk, and f . The dual of this property is articulated in note 12 of the

HW6 solutions. The fact denoted Cocone Triangle is that [zk | k ∈ K] ◦ inck0 = zk0

for any fixed k0, which is true by the definition of [−] (this is the claim that the triangles
commute in the colimit diagram). Now, the morphism we got in line (*) is actually the
identity on colimi colimj X(i, j). To see this, pick any i0 ∈ I and j0 ∈ J . Then observe:[[

inci ◦ inc2
i,j | j ∈ J

]
| i ∈ I

]
◦ inci0 ◦ inc2

i0,j0

=
[
inci0 ◦ inc2

i0,j
| j ∈ J

]
◦ inc2

i0,j0

= inci0 ◦ inc2
i0,j0

= id ◦ inci0 ◦ inc2
i0,j0

Since j0 was arbitrary, we can conclude by ColimInj (see HW6 sols once again) that[[
inci ◦ inc2

i,j | j ∈ J
]
| i ∈ I

]
◦ inci0 = id ◦ inci0

but i0 was arbitrary, so, again by ColimInj,[[
inci ◦ inc2

i,j | j ∈ J
]
| i ∈ I

]
= id,

so [[
inci ◦ inc2

i,j

]]
◦
[[
incj ◦ inc1

i,j

]]
= id.

A similar calculation in the other direction shows that[[
incj ◦ inc1

i,j

]]
◦
[[
inci ◦ inc2

i,j

]]
= id.


