
Category Theory (80-413/713) F20 HW8, Exercises 1 & 6 Solution

Jacob Neumann, November 2020

Problem:

For an adjunction

A B
F

U

a

with bijection
φ : HomB(F (−),−)

∼−→ HomA(−, U(−))

and objects A of A and B of B, define

ηA : A→ UFA ηA = φA,FA(idFA)

εB : FUB → B εB = φ−1UB,B(idUB)

(a) Show that ηA and εB are natural in A and B, respectively, and thus consitute
natural transformations

η : idA → U ◦ F ε : F ◦ U → idB

called the unit and counit of the adjunction.

(b) Show that the triangles

UB

UFUB UB

ηUB
idUB

U(εB)

and
FA

FUFA FA

F (ηA)
idFA

εFA

(called triangle equalities) commute for all A ∈ A and B ∈ B.

Solution:

1
First, one point of notation: I’ll generally omit the subscripts when I use φ, e.g. writing
ηA = φ(idFA). This is done for convenience and readability; you can also test your
understanding by trying to determine which component of φ we’re applying. If we were
working with φ as a natural transformation more in its own right (e.g. composing it with
other natural transformations), then we would need to take more care to distinguish φ
from its components.

2
The solution to this problem entirely hinges on correctly stating the naturality of φ
and φ−1. While we could state what it means for φ, φ−1 to be natural in A and B
simultaneously (i.e. articulate Hom(F (−),−) and Hom(−, U(−)) as functors Aop×
B→ Set and state φ and φ−1 as natural transforms between them 1 ), it is more
fruitful to state the naturality in A and naturality in B separately.



2

To state the naturality in A, we fix an arbitrary object B of B. Then for any
f : A→ A′ in A, the following diagram must commute.

Hom(FA,B) Hom(A,UB)

Hom(FA′, B) Hom(A′, UB)

φ

φ−1

φ

−◦F (f)

φ−1

−◦f

Note the contravariance of Hom(F (−), B) and Hom(−, UB): f goes from A to A′, but
Hom(Ff,B) goes from Hom(FA′, B) to Hom(FA,B). As indicated in the diagram, the
morphism part of the Hom(F (−), B) and Hom(−, UB) functors is given by precompo-
sition. For our later convenience, let us state these as: 2

Eq. 1 φ(v ◦ F (f)) = φ(v) ◦ f (For all v ∈ HomB(FA′, B))

Eq. 2 φ−1(u) ◦ F (f) = φ−1(u ◦ f) (For all u ∈ HomA(A′, UB))

Similarly, to state the naturality in B, we fix any object A of A. Then, for any
g : B → B′ in B, the following commutes.

Hom(FA,B) Hom(A,UB)

Hom(FA,B′) Hom(A,UB′)

φ

g◦−

φ−1

U(g)◦−

φ

φ−1

Eq. 3 φ(g ◦ v) = U(g) ◦ φ(v) (For all v ∈ HomB(FA,B))

Eq. 4 g ◦ φ−1(u) = φ−1(U(g) ◦ u) (For all u ∈ HomA(A,UB))

These four equations will allow us to solve (a) and (b) 3 .
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3
For (a), let’s start with the naturality of η. Pick arbitrary f : A→ A′ in A. We need to

argue that the naturality square 4

A UFA

A′ UFA′

f

ηA

UFf

ηA′

commutes. But, with the definition of η, Eq. 1 , and Eq. 3 , this becomes a simple

calculation 5 :

ηA′ ◦ f = φ(idFA′) ◦ f
= φ(idFA′ ◦ F (f)) Eq. 1

= φ(F (f) ◦ idFA)

= U(F (f)) ◦ φ(idFA) Eq. 3

= UFf ◦ ηA

4
The naturality of ε is similar: for arbitrary g : B → B′ in B, the naturality square

FUB B

FUB′ B′

FUg

εB

g

εB′

commutes:

εB′ ◦ FUg = φ−1(idUB′) ◦ F (Ug)

= φ−1(idUB′ ◦ Ug) Eq. 2

= φ−1(Ug ◦ idUB)

= g ◦ φ−1(idUB) Eq. 4

= g ◦ εB
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5
Part (b) also follows easily 6 from these four equations. Pick arbitrary B in B. Then,

U(εB) ◦ ηUB = U(εB) ◦ φ(idFUB)

= φ(εB ◦ idFUB) Eq. 3

= φ(εB)

= φ(φ−1(idUB))

= idUB.

For arbitrary A in A,

εFA ◦ F (ηA) = φ−1(idUFA) ◦ F (ηA)

= φ−1(idUFA ◦ ηA) Eq. 2

= φ−1(ηA)

= φ−1(φ(idFA))

= idFA

Notes:

1 More Formally,

HomB(F (−),−) : Aop × B −→ Set

(A,B) 7→ HomB(FA,B)

(f : A→ A′, g : B → B′) 7→ (v 7→ g ◦ v ◦ F (f)) : HomB(FA′, B)→ HomB(FA,B′)

HomA(−, U(−)) : Aop × B −→ Set

(A,B) 7→ HomA(A,UB)

(f : A→ A′, g : B → B′) 7→ (u 7→ U(g) ◦ u ◦ f) : HomA(A′, UB)→ HomA(A,UB′)

A morphism in Aop × B is a pair (f, g) : (A′, B)→ (A,B′) where f : A→ A′ in A and
g : B → B′ in B. For φ to be a natural transformation Hom(F (−),−)→ Hom(−, U(−))
means that for all (f, g) in Aop × B, the diagram

HomB(FA′, B) HomA(A′, UB)

HomB(FA,B′) HomA(A,UB′)

g ◦ − ◦ F (f)

φ

φ−1

Ug ◦ − ◦ f

φ

φ−1

commutes. Facts Eq. 1 through Eq. 4 are the special cases where either f = idA or
g = idB.
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2 As always, isolating and naming the key facts of the problem is always recommended.

3 Notice here that we’ve taken the abstract (and somewhat complex) definition for what it
means for φ to be a natural transformation, and reduced it to four equations. Through-
out this problem (and others), this is all we’ll need the naturality of φ for: to manipulate
algebraic equations involving F , U , φ, and φ−1. Specifically, notice how all of these equa-
tions involve bringing f or g inside the argument to φ or φ−1 (and taking f or g “out”

of the argument). Eq. 2 , for instance, says that if we have φ−1 applied to something

composed with F (f) on the right, then we can bring the f inside the argument to φ−1,
dropping the F . In this way, complex and abstract notions like “the naturality of φ”
become simple rules for manipulating symbols.

4 All naturality squares have the same structure: they’re parametrized by morphisms in
the domain category of the two functors. On the left is the first functor applied to
the morphism (including its domain and codomain), on the right is the second functor
applied to the same morphism, and the purported natural transformation runs between
the two sides along the top and bottom of the square.

5 Unless you’re invoking some more complex argument (and know what you’re doing),
then this is how you should usually perform a naturality calculation. Establish all the
facts you need (like I’ve done here with Eq. 1 and Eq. 3 ) and then grind out the
algebra so it’s clear to see.

6 As much as I love seeing a bunch of diagrams and explanation, here it’s not really nec-
essary. The diagrams I’m proving have already been drawn (in the problem statement),
and I’ve thoroughly established the keys facts I’ll need. So no need to waste time – let
us calculate!
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Problem:

Suppose we have an adjunction 7

A B
F

U

a

and a diagram X : I → A such that colimiXi exists in A.

(a) Construct a bijection cocone(F ◦X,Z) ∼= cocone(X,U(Z))

(b) Use this to prove that F (colimiXi) is a colimit for the diagram (F ◦X) : I → B.

Solution:

6
Let φ be the natural transformation witnessing F a U 8 , as above. In particular,

Eq. 1 through Eq. 4 still hold.

(a) We’ll construct a bijection 9

ΘZ : cocone(F ◦X,Z)
∼−→ cocone(X,U(Z)).

Let (zi : F (Xi)→ Z)i∈I be a cocone on F ◦X with apex Z in B. In particular,

Eq. 5 zi = zj ◦ F (X(w)) (For all w : i→ j in I)

Then define ΘZ((zi)i∈I) by putting

θi = φ(zi) : Xi → U(Z)

for each object i of I. To see that this defines a cocone on X with apex U(Z), pick
arbitrary w : i→ j in I and observe

θj ◦X(w) = φ(zj) ◦X(w)

= φ(zj ◦ F (X(w))) Eq. 1

= φ(zi) Eq. 5

= θj.

Finally, to see that ΘZ is a bijection, it suffices to define Θ−1Z as the function sending
a cocone (ζi : Xi → U(Z))i∈I) to (φ−1(ζi) : F (Xi) → Z)i∈I , which can be seen to be
a cocone similarly. This is an inverse for ΘZ because φ and φ−1 are inverses, hence for
any cocones (zi : F (Xi)→ Z) and (ζi : Xi → U(Z)), we have for any i that

φ(φ−1(ζi)) = ζi and φ−1(φ(zi)) = zi

so ΘZ and Θ−1Z are inverses. 10
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7
For (b), let

incj : Xj → colim
i

Xi (j ∈ I)

denote the components of the colimit cocone on X. We need to show that(
F (incj) : F (Xj)→ F (colim

i
Xi)

)
j∈I

is a colimit cocone on F ◦X.

A quick argument goes like this: take any object Z of B, and observe the following
bijections

Hom(F (colim
i

Xi), Z) ∼= Hom(colim
i

Xi, U(Z)) (F a U)

∼= cocone(X,U(Z)) (Univ. Prop. of Colimits)
∼= cocone(F ◦X,Z). (Θ,Θ−1)

We can check 11 that for any k ∈ Hom(F (colimiXi), Z) the cocone on F ◦X we get
out of this bijection is indeed the one given by k ◦ F (inci) : F (Xi)→ Z, thus we satisfy
the universal property of colimits 12 .

8
We’ll work through this solution in more elementary detail. As usual, proving that
a cocone is a colimit requires us to verify the universal property of colimits. Pick an
arbitrary cocone

mi : F (Xi) −→M.

We can apply ΘM to this cocone, and obtain a cocone

φ(mi) : Xi −→ U(M).

But by the universal property of colimiXi, we obtain a unique map h : colimiXi →
U(M) such that

Eq. 6 φ(mi) = h ◦ inci (For all i ∈ I)

We claim that φ−1(h) : F (colimiXi)→M fulfills the universal property of colimits,
namely that φ−1(h) is the unique map k : F (colimiXi)→M such that

mi = k ◦ F (inci) for all i ∈ I.

To see that φ−1(h) is such a k, observe that

mi = φ−1(φ(mi))

= φ−1(h ◦ inci) Eq. 6

= φ−1(h) ◦ F (inci) Eq. 2

To see that it is the unique such k, suppose we had another k′ : F (colimiXi)→M such
that
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Eq. 7 mi = k′ ◦ F (inci) (For all i)

Then consider φ(k′) : colimiXi → U(M), and observe

φ(k′) ◦ inci = φ(k′ ◦ F (inci)) Eq. 1

= φ(mi) Eq. 7

But remember that we said h was the unique map colimiXi → U(M) such that h◦ inci =
φ(mi) for all i. Thus we get

φ(k′) = h

and, by the bijectivity of φ,
k′ = φ−1(h)

as desired.

Notes:

7 I’ve changed the names of the categories and functors of this problem to match that
of the previous one. You’re welcome to change the variable names & such from the
problem statement when writing your solutions, so long as you make it super obvious
you’re still solving the same problem.

8 I very much like this terminology of “witnesses”: we’re saying that F a U , and that φ
is the piece of data (satisfying the requisite properties) that “fulfills” the requirements
put forth in the definition of adjunction, hence it bears witness to the fact that F a U .

9 Note that I indexed Θ with the apex of the cocone, Z. This is because there is such a
Θ for each object Z of B. In the problem, I’ll be using different instances of Θ.

10 I’m implicitly using the fact that cocones are defined by their cocone maps. So if
(di : Xi → C)i∈I and (ei : Xi → C)i∈I are two cocones on the same diagram with the
same apex such that

ei = di for all i ∈ I,

then (di)i∈I = (ei)i∈I , i.e. they are equal elements of cocone(X,C).

11 Label this chain of bijections as

Hom(F (colim
i

Xi), Z)
∼→ Hom(colim

i
Xi, U(Z)) (1)

∼→ cocone(X,U(Z)) (2)
∼→ cocone(F ◦X,Z). (3)

Starting with k ∈ Hom(F (colimiXi), Z) on the left, we have

k
(1)7→ φ(k)

(2)7→ (φ(k) ◦ inci)i∈I
(3)7→ Θ−1((φ(k) ◦ inci)i∈I)

But Θ−1 applied to the cocone has i-component φ−1(φ(k) ◦ inci). Using Eq. 2 gives

φ−1(φ(k) ◦ inci) = φ−1(φ(k)) ◦ F (inci) = k ◦ F (inci) for all i ∈ I
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as claimed. This fulfills the universal property of colimits because we know that each
of these steps is a bijection, i.e. for any cocone on F ◦X with apex Z, we can recover
a unique map in Hom(F (colimiXi), Z) which, when run through (1),(2),(3) in order,
gives us back the cocone we started with, i.e. it makes all the triangles commute. See
12 .

12 Remember that, for any J-shaped diagram Y , the universal property of colimits is not
merely that there is a bijection Hom(colimj Yj, Z) ∼= cocone(Y, Z) for every Z, but
specifically that this bijection is the function k 7→ (k ◦ incj)j∈J . So it was not enough

to just demonstrate the bijections – we needed to do the work in 11 to show that the
bijection we obtained was in fact this canonical function.


