
Category Theory (80-413/713) F20 HW6, Exercises 4 & 5 Solution

Jacob Neumann, October 2020

Problem:

Let I and J be two small categories and C a category with colimits of shape I and J .
We fix a diagram

X : I × J → C

(a) Using the universal property of colimits, define diagrams

X1 : J → C X2 : I → C

: j 7→ colim
i

X(i, j) : i 7→ colim
j

X(i, j)

(b) If Z := colimj X
1(j), construct a cocone X(i, j)→ Z

(c) Prove that this cocone X(i, j)→ Z is a colimit cocone.

(d) Prove that colimj X
1(j) = colimiX

2(i) = colimi,j X(i, j)

Solution:

1
Let’s begin with some notation. Throughout, I’ll use i, i′, i′′, i0, i1, i2,etc. to denote
objects of I, and likewise j, j′, j′′, j0, j1, j2 for objects of J . f, f1, f2 will denote morphisms
of I and g, g1, g2 morphisms of J . I’ll write inc to denote the inclusion maps of a diagram
into its colimit, with appropriate decoration to disambiguate which diagram I’m referring
to:

inc1i,j : X(i, j)→ X1(j) incj : X1(j)→ Z inci : X2(i)→ Z

Given any diagram Y : K → C such that colimk Y (k) exists, and a cocone wk :
Y (k)→ W , write

[wk | k ∈ K] : colim
k

Y (k)→ W

for the unique map h such that wk = h ◦ incYk for all k (the map whose existence is
required by the universal property of colimits). 1

2
Throughout, we’ll make use of the following principle 2 : if Y,K are as in the
previous paragraph, and p, q : colimk Y (k)→ E are some morphisms in C such that

p ◦ incYk = q ◦ incYk for all objects k of K

then we can conclude that p = q. We’ll refer to this as ColimInj, since it corresponds
to the injectivity of the map Hom(colimk Y (k),W ) → Cocone(Y,W ) in the bijection
characterization of the universal property of colimits.
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3
Let’s begin with (a). First begin by noting that, for any fixed object j of J , we have

the functor 3
X(−, j) : I → C

Since X(−, j) is an I-shaped diagram in C and C has all such colimits, we can take the
colimit over i, for each j.

X(i1, j3)

X(i1, j2) colimi X(i, j3)

X(i1, j1) colimi X(i, j2) X(i2, j3)

colimi X(i, j1) X(i2, j2)

X(i2, j1)

X(f1,j3)

inc1i1,j3

X(f1,j2)

X(i1,g2)

inc1i1,j2

X(f1,j1)

X(i1,g1)

inc1i1,j1

inc1i2,j3

X(i2,g2)

inc1i2,j2

X(i2,g1)

inc1i2,j1

As indicated in the problem statement, this assignment of objects j to the respective
colimit colimiX(i, j) constitutes the object part of a functor X1 : J → C. So, to fulfill
the definition of functor, we must supply the morphism part, and then check
functoriality 4 .

4
Supplying the morphism part of this functor means that for each morphism g : j → j′

of J , we supply some C-morphism X1(g) : X1(j)→ X1(j′).



3

X(i1, j3)

X(i1, j2) colimi X(i, j3)

X(i1, j1) colimi X(i, j2) X(i2, j3)

colimi X(i, j1) X(i2, j2)

X(i2, j1)

X(f1,j3)

inc1i1,j3

X(f1,j2)

X(i1,g2)

inc1i1,j2

X(f1,j1)

X(i1,g1)

inc1i1,j1

inc1i2,j3

X(i2,g2)

inc1i2,j2

X(i2,g1)

inc1i2,j1

So suppose g1 : j1 → j2 is some such morphism of J . We’ll construct a cocone on
the diagram X(−, j1) whose apex is X1(j2), and thereby obtain a morphism X1(j1)→
X1(j2) by the universal property of X1(j1) as the colimit of X(−, j1). Consider the
following composition

X(i, j1) X(i, j2) X1(j2)
X(i,g1) inc1i,j2

where i varies over all objects of I. To see that these maps constitute a cocone
on X(−, j1) 5 , pick an arbitrary f1 : i1 → i2 in I and observe

(inc1i2,j2 ◦X(i2, g1)) ◦X(f1, j1)

= inc1i2,j2 ◦X(f1, j2) ◦X(i1, g1) (Functoriality of X)

= inc1i1,j2 ◦X(i1, g1). (inc1i,j2 is a cocone on X(−, j2))

Therefore this is a cocone, so we obtain a unique map X1(g1) : X1(j1)→ X1(j2), namely
X1(g1) =

[
inc1i,j2 ◦X(i, g1) | i ∈ I

]
via the universal property of X1(j1) as the colimit

of X(−, j1). In particular, note that the commutativity of the triangles in the universal
property says that for any i ∈ I,

X1(g1) ◦ inc1i,j1 = inc1i,j2 ◦X(i, g1). (FACT 1) 6

5
To check that X1 preserves identities, it’s sufficient (by ColimInj) to show that

X1(1j) ◦ inc1i,j = 1X1(j) ◦ inc1i,j
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but this is an immediate consequence of FACT 1:

X1(1j) ◦ inc1i,j = inc1i,j ◦X(i, 1j) (FACT 1)

= inc1i,j ◦ 1X(i,j) (Functoriality of X)

= inc1i,j

= 1X1(j) ◦ inc1i,j

To see that X1 preserves composition, pick arbitrary g1 : j1 → j2 and g2 : j2 → j3 in J
and notice

X1(g2) ◦X1(g1) ◦ inc1i,j1
= X1(g2) ◦ inc1i,j2 ◦X(i, g1) (FACT 1)

= inc1i,j3 ◦X(i, g2) ◦X(i, g1) (FACT 1)

= inc1i,j3 ◦X(i, g2 ◦ g1) (Functoriality of X)

= X1(g2 ◦ g1) ◦ inc1i,j1 . (FACT 1)

Again by ColimInj, conclude X1(g2) ◦X1(g1) = X1(g2 ◦ g1).

6
We can conduct the analogous construction for X2 7 : since X(i0,−) is a J-
shaped diagram for each i0, we can take the colimit over all js to define the object part
X2(i) = colimj X(i, j). Then, for any f1 : i1 → i2 in I, we can check that

inc2i2,j ◦X(f1, j) : X(i1, j)→ X2(i2)

constitutes a cocone on X(i1,−), and therefore the unique map[
inc2i2,j ◦X(f1, j) | j ∈ J

]
: X2(i1)→ X2(i2)

works as X2(f1). We get a corresponding fact:

X2(f1) ◦ inc2i1,j = inc2i2,j ◦X(f1, j) (FACT 2)

which can be used to prove the functoriality of X2 in the same manner we did for X1.
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7
Moving on to (b), we observe that X1 is a J-shaped diagram in C, hence we may take
its colimit. Call the colimit Z, and write incj : X1(j)→ Z for the inclusion maps.

X(i1, j3)

X(i1, j2) X1(j3)

X(i1, j1) X1(j2) X(i2, j3)

X1(j1) X(i2, j2)

X(i2, j1) Z

inc1i1,j3X(i1,q)

inc1i1,j2

incj3

X(f1,j1)

X(i1,g1)

inc1i1,j1

X1(g2)

incj2

X1(g1)

incj1

X(i2,g2)

X(i2,g1)

inc1i2,j1

We must show that Z is the apex of some cocone on the diagram X : I × J → C,
i.e. we must supply maps zi,j : X(i, j) → Z for each i, j such that zi,j = zi′,j′ ◦X(f, g)
for every morphism (f, g) : (i, j)→ (i′, j′) in I ×J . As suggested by the diagram above,
this is achieved by the composition

X(i, j) X1(j) Z
inc1i,j incj

So put zi,j = incj ◦ inc1i,j. To see this is a cocone, pick arbitrary f1 : i1 → i2 and
g1 : j1 → j2.
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X(i1, j1)

X1(j1)

X(i2, j1) Z

X(i1, j2)

X1(j2)

X(i2, j2)

inc1i1,j1

X(i1,g1)

X(f1,j1)

X1(g1)

incj1

inc1i2,j1

X(i2,g1)
inc1i1,j2

X(f1,j2)

incj2

inc1i2,j2

The left square commutes by the functoriality of X, the other squares by FACT 1. The three triangles

commute because colimits are cocones. X(f1, g1) is the diagonal of the left square.

Then,

zi2,j2 ◦X(f1, g1)

= incj2 ◦ inc1i2,j2 ◦X(f1, g1)

= incj2 ◦ inc1i2,j2 ◦X(f1, j2) ◦X(i1, g1) (Functoriality of X)

= incj2 ◦ inc1i1,j2 ◦X(i1, g1) (X1(j2) is a cocone)

= incj2 ◦X1(g1) ◦ inc1i1,j1 (FACT 1)

= incj1 ◦ inc1i1,j1 (Z is a cocone)

= zi1,j1

so we can conclude that zi,j : X(i, j)→ Z indeed is a cocone.

8
For (c), we wish to show that (zi,j)i∈I,j∈J is the colimit cocone on X. We do this, as
usual, by verifying the universal property. Let wi,j : X(i, j) → W be an arbitrary

cocone on X 8 . We want a unique map Z → W making every triangle commute (i.e.
the orange shape below, for every i1, j1).
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X(i1, j1)

X1(j1)

X(i2, j1) Z W

X(i1, j2)

X1(j2)

X(i2, j2)

inc1i1,j1

X(i1,g1)

X(f1,j1)

wi1,j1

X1(g)

incj1

inc1i2,j1

∃!

inc1i1,j2

X(f1,j2)

incj2

inc1i2,j2

wi2,j2

We’ll use the universal properties of colimits to define such a map.

9
To begin, observe that for all f1 : i1 → i2 and every j that the following 9 commutes.

X(i1, j)

X1(j) W

X(i2, j)

X(f1,j)

wi1,j

[wi,j | i∈I]

wi2,j

For the sake of notation, we’ll write kj for [wi,j | i ∈ I] : X1(j)→ W . Remember its

key property 10 :

kj ◦ inc1i,j = wi,j for all i, j (FACT 3)

Since we can define this for all j, we have the following diagram for any g1 : j1 → j2 in
J ,
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X1(j1)

Z W

X1(j2)

X1(g1)

kj1

ϕ

kj2

That kj2 ◦X1(g1) = kj1 can be verified using ColimInj: for any i,

kj2 ◦X1(g1) ◦ inc1i,j1 = kj2 ◦ inc1i,j2 ◦X(i, g1) (FACT 1)

= wi,j2 ◦X(i, g1) (FACT 3)

= wi,j1 (wi,j cocone)

= kj1 ◦ inc1i,j1 . (FACT 3)

Therefore conclude kj2 ◦X1(g1) = kj1 , hence the kjs constitute a cocone on X1. Since
Z is the colimit on X1, obtain ϕ = [kj | j ∈ J ] as indicated above.

10
So it remains to show that ϕ has the universal property we want, i.e. it is the unique
map such that ϕ ◦ zi,j = wi,j for all i, j. Observe:

ϕ ◦ zi,j = ϕ ◦ incj ◦ inc1i,j
= kj ◦ inc1i,j (ϕ = [kj | j ∈ J ])

= wi,j. (FACT 3)

Now, if there were ϕ′ : Z → W such that ϕ′ ◦ zi,j = wi,j for all i, j 11 , then that
means

ϕ ◦ incj ◦ inc1i,j = ϕ′ ◦ incj ◦ inc1i,j (for all i, j)

Apply ColimInj to get

ϕ ◦ incj = ϕ′ ◦ incj (for all j)

and apply ColimInj once again to get

ϕ = ϕ′.

So the universal property is proven, and zi,j : X(i, j)→ Z is the colimit cocone on X.

11
The most straightforward way to prove (d) is to show that colimiX

2(i) must also satisfy
the universal property of the colimit on X, and thereby (with (c)) conclude

colim
j

X1(j) ∼= colim
i,j

X(i, j) ∼= colim
i

X2(i)
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since colimits are unique up to unique isomorphism.

This can be done analogously to our development of X1. Letting Y be colimiX
2(i)

with inclusion maps inci : X2(i)→ Y , we can argue that the maps

yi,j = inci ◦ inc2i,j : X(i, j)→ Y

form a cocone by appealing to FACT 2, the functoriality of X, that X2(i) is a cocone,
and that Y is the colimit of X2. We can then argue that yi,j is the colimit of X by
picking another cocone wi,j : X(i, j) → W and leveraging the universal properties of
Y as the colimit of X2 and X2(i) as the colimit of X(i,−) to construct a unique map
ψ : Y → W such that ψ ◦ yi,j = wi,j for all i, j.

Notes:

1 A common notation convention is to write

〈vk | k ∈ K〉 : E → lim
k
Y (k)

for the unique map h such that vk = pk ◦ h for every object k in K (which we get by
the universal property of limits – assuming limk Y (k) exists – so long as vk : E → Y (k)
is a cone on the diagram Y ). pk : limk′ Y (k′) → Y (k) are the projection maps of the
limit cone. This is the “indexed” generalization of the notation you’ve already seen for
products, namely writing 〈f, g〉 : C → A×B for some f : C → A and g : C → B. The
[wk | k ∈ K] : colimk Y (k)→ W above is the dual notation for colimits.

Alternatively, you could think of these as maps:

〈−〉 : Cone(Y,E)→ Hom(E, lim
k
Y (k))

[−] : Cocone(Y,W )→ Hom(colim
k

Y (k),W )

One way to state the “bijection characterization” of the universal properties of limits
and colimits (respectively) is that these functions exist and are bijections. Moreover,
〈−〉 is natural in E: view Cone(Y,−) and Hom(−, limk Y (k)) as functors Cop → Set
whose morphism parts are given by the appropriate notions of composition, and check
that for any s : E → E ′ and any (tk)k∈K ∈ Cone(Y,E ′) in C that

〈Cone(Y, s)(tk)〉 = Hom(s, lim
k
Y (k)) 〈tk | k ∈ K〉

i.e. that 〈tk〉 ◦ s is the unique map h such that tk ◦ s = pk ◦ h for all k. Likewise,
Cocone(Y,−) and Hom(colimk Y (k),−) are functors C → Set with [−] a natural iso-
morphism between them.

2 This is a good way to write proofs: identify some styles of reasoning you’re going to
use over and over, isolate and name them, and then refer to them (instead of having to
walk through the same logic over and over).
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3 Here I write a hyphen to indicate where the argument goes, which is useful for “partially
applying” multi-argument functors. For instance, we can take the functor

Hom : Cop ×C→ Set

and supply just one argument X to get the functors

Hom(X,−) : C→ Set

and
Hom(−, X) : Cop → Set.

Of course, we write Hom(X, Y ) instead of Hom(−, Y )(X). There’s some things to check
to make sure that this is legitimate, but it is.

Note that for f : i → i′ in I, X(f, j) is the same thing as X(f, 1j), i.e. we take
(f, 1j) : (i, j) → (i′, j) as a morphism in I × J and apply the functor X to it. This is
also a common notational convention (sometimes it gets tedious to write all the 1’s).

4 Whenever you’re asked to supply a functor, always do this. For any functor you
define, you need to make clear what the object and morphism parts are and prove
functoriality (that it preserves identities and composition). You don’t have to go into
detail if it’s trivial, but you need to mention it . . . otherwise how do I know that you
understand that these are the necessary components/requirements of a functor?

5 A very common mistake I see is forgetting to do this. You cannot apply the uni-
versal properties of (co)limits to things that are not (co)cones. Just because
you have some data of the right type (in this case, an I-indexed collection of maps
X(i, j1)→ X1(j2)), that does not make it a cocone: it has to satisfy the commutativity
condition.

6 Pro tip: name your facts! Makes it easier to refer to later.

7 I was relatively lenient on grading this, since it is very similar. But in the future, you’re
expected to do what I do here: indicate what the key facts & steps are in the proof.

8 This is how basically every proof of a universal property should start.

9 It’s important to keep your diagrams manageable. I saw plenty of people try to draw
the entire setup in one diagram. . . for a complex enough problem (like this one), that’s
going to confuse more than help. Depict the aspect you’re discussing at the moment,
and leave the other details for other diagrams.

10 I’m forgetful and easily distracted. Tell me directly what the key facts are.

11 This reminds me of another common mistake. Remember: universal properties usually
have the conclusion “there exists a unique such that ”. Don’t forget the “such
that ”! There’s not a unique map ϕ : Z → W , full stop. There’s a unique
ϕ : Z → W such that ϕ ◦ zi,j = wi,j.
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Problem:

Let I and J be two small categories and C a category with colimits of shape I and limits
of shape J . We fix a diagram

X : I × J → C

(a) Using the universal property of limits and colimits, construct a map

colim
i∈I

lim
j∈J

X(i, j)→ lim
j∈J

colim
i∈I

X(i, j)

(b) Find an example of a diagram X : I × J → C for which this map is not an
isomorphism.

Solution:

12
Let’s define X1 : J → C as in the previous problem: each j ∈ J gets sent to colimiX(i, j)
and each g1 : j1 → j2 gets sent to the unique map[

inc1i,j2 ◦X(i, g1) | i ∈ I
]

: colim
i

X(i, j1)→ colim
i

X(i, j1)

which, as established above, satisfies the key property that, for any i ∈ I,

X1(g1) ◦ inc1i,j1 = inc1i,j2 ◦X(i, g1). (FACT 1)

We’ll do the dual thing for the other argument, putting

X2 : I → C

: i 7→ lim
j
X(i, j)

and then noticing that for any j and any f1 : i1 → i2 in I that the maps

X(f1, j) ◦ pi1,j : lim
j
X(i1, j)→ X(i2, j)

form a cone on X(i2,−), hence we can put

X2(f1) = 〈X(f1, j) ◦ pi1,j | j ∈ J〉 : lim
j
X(i1, j)→ lim

j
X(i2, j)

which have a dual property to FACT 1:

pi2,j ◦X2(f1) = X(f1, j) ◦ pi1,j. (FACT 4)

X(i1, j) X(i2, j)

limj X(i1, j) limj X(i2, j)

X(f1,j)

pi1,j

X2(f1)

pi2,j
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Let us also recall that for all i, j, all f1 : i1 → i2 and all g1 : j1 → j2 that

inc1i2,j ◦X(f1, j) = inci1,j (Colimits are cocones)

X(i, g1) ◦ pi,j1 = pi,j2 (Limits are cones)

Now, our goal is to construct a map

colim
i

X2(i)→ lim
j
X1(j).

13
Start by considering these maps, for any i1, j1:

limj X(i1, j) X(i1, j1) colimj X(i, j1)
pi1,j1

inc1i1,j1

Call their composite hi1,j1 = inc1i1,j1 ◦ pi1,j1 . Notice that these form a cone on X1: for
any g1 : j1 → j2 and any i, the triangle

X1(j1)

X2(i)

X1(j2)

X1(g1)

hi,j1

hi,j2

commutes:

X1(g1) ◦ hi,j1
= X1(g1) ◦ inc1i,j1 ◦ pi,j1
= inc1i,j2 ◦X(i, g1) ◦ pi,j1 (FACT 1)

= inc1i,j2 ◦ pi,j2 (Limits are cones)

= hi2,j2 .

Therefore, we obtain for each i a map

ki = 〈hi,j | j ∈ J〉 : X2(i)→ lim
j
X1(j).

14
These maps form a cocone on X2: for each f1 : i1 → i2, the triangle
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X2(i1)

limj X
1(j)

X2(i2)

X2(f1)

ki1

ki2

commutes:

ki2 ◦X2(f1)

= 〈hi2,j | j ∈ J〉 ◦X2(f1)

= 〈hi2,j ◦X2(f1) | j ∈ J〉 ( 12 )

= 〈inc1i2,j ◦ pi2,j ◦X
2(f1) | j ∈ J〉

= 〈inc1i2,j ◦X(f1, j) ◦ pi1,j | j ∈ J〉 (FACT 4)

= 〈inc1i1,j ◦ pi1,j | j ∈ J〉 (Colimits are cocones)

= 〈hi1,j | j ∈ J〉
= ki1 .

Therefore we have obtained a cocone on X2 whose apex is limj X
1(j), so there is a

unique map
[ki | i ∈ I] : colim

i
X2(i)→ lim

j
X1(j).

15
For (b), the easiest counterexample is to take I = J = ∅ 13 and C = Set (or
Set<ω). Recall that the colimit over an empty diagram is an initial object, which is ∅ in
Set, i.e.

∅ = colim
i

X2(i).

Dually, the limit of an empty diagram is a terminal object, which is {?} in Set, so

{?} = lim
j
X1(j).

The map we obtained in the previous part is the unique map ∅ → {?}, but there cannot
be a map {?} → ∅, hence this cannot be an isomorphism.

Notes:

12 The general fact is this: for any diagram Y : K → C such that limk Y (k) exists, and
for any cone zk : Z → Y (k) and any map f : Z ′ → Z,

〈zk | k ∈ K〉 ◦ f = 〈zk ◦ f | k ∈ K〉
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You proved the special case of binary products (i.e. K = {0, 1}) on Homework 4. This
is again a consequence of the injectivity of the map Cone(Y, Z ′)→ Hom(Z ′, limk Y (k)),
and is the key fact behind the proof that 〈−〉 is natural in its cone argument.

13 This is a generally-applicable lesson for math: if you need a counterexample, always try
the empty set!


