
Category Theory (80-413/713) F20 HW10, Exercise 4 Solution

Jacob Neumann, November 2020

Problem:

Let C be a small category and Ĉ the category of presheaves on C. Let F : I → Ĉ be a
small diagram of presheaves.

(a) Suppose that limi Fi exists and use the Yoneda Lemma to explicitly describe this
presheaf.

(b) Verify that this presheaf has the expected universal property of limi Fi and deduce

that I-limits exist in Ĉ.

(c) Suppose that C has I-limits, prove that they are preserved by the Yoneda embed-

ding y : C→ Ĉ

Solution:

1
First, a brief bit about notation: I’ll generally write the Yoneda embedding as y (e.g.

writing y(X) for the presheaf Hom(−, X) instead of X̂), since I find it difficult to un-

ambiguously use the notation X̂ when X is a long expression. 1 I’ll try to give some

indication of how to translate from this convention to the (̂−) convention from lecture
(also note that the book also uses y for the Yoneda embedding). For the category of

presheaves on C, I’ll match the notation from lecture and write Ĉ.

Next, a note about what we’re doing. Usually, when working with limits in the

category of presheaves Ĉ, we’ll generally define the presheaf (limi Fi) : Cop → Set
pointwise, i.e. put

Pointwise Defn

(lim
i
Fi)(X)

def
= lim

i
(Fi(X)) (X ∈ Ob(C))

(lim
i
Fi)(u)

def
= lim

i
(Fi(u))

def
= 〈Fiu ◦ pYi | i ∈ I〉 (u : X → Y in C)

where pZj : limi(Fi(Z))→ Fj(Z) is the j-th projection function, a component of the
limit cone on the diagram

F−(Z) : I → Set

for each object Z of C. In Part (a) of this problem, we are showing that (up to isomor-
phism) this is the right definition for limi Fi. More precisely, the goal of (a) is to show

that, up to isomorphism, Pointwise Defn is the only way to define limi Fi such that

limi Fi is actually a limiting object (in Ĉ) for the Fis.

To do this, we’ll temporarily pretend that limi Fi is not defined by Pointwise Defn .
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Instead, we take as given that limi Fi exists, i.e. we have a presheaf limi Fi and a cone

in Ĉ consisting of natural transformations

ρj : lim
i
Fi → Fj

that satisfies the universal mapping property of limits. Contrast that with the functor
defined pointwise, which we’ll now call L:

Defn L Define L : Cop → Set by

L(X)
def
= lim

i
(Fi(X)) (X ∈ Ob(C))

L(u)
def
= lim

i
(Fi(u))

def
= 〈Fiu ◦ pYi | i ∈ I〉 (u : X → Y in C)

We can think of (a) and (b) as a kind of “uniqueness” proof, where we’re proving
that there exists a unique way to define limi Fi that satisfies the UMP of the limit. (b)
is the “existence” part of the proof: we show that there exists a presheaf satisfying the
universal property, i.e. Defn L is an appropriate way of defining limi Fi. (a) is the
“uniqueness” part of the proof: if we have that limi Fi exists and satisfies the UMP of
the limit of F , then limi Fi ∼= L, so, up to natural isomorphism, Defn L is the only

appropriate way of defining limi Fi. Thus Pointwise Defn is justified.

On the other hand, (c) is a related but slightly different statement. (a) and (b) give

the formula for limits in Ĉ, and, notice, do not make any assumptions about whether

C itself has I-shaped limits. The existence of limits of shape I in Ĉ is unconditional:

limits exist in Ĉ regardless of whether they exist in C. 2 But if C does have I-shaped
limits, then we’ll argue that the Yoneda embedding preserves I-shaped limits, i.e. for
any G : I → C, we have limi y(G(i)) ∼= y(limiG(i)). 3 In a slogan:

limits of representables are represented by limits.

Note that in the equation limi y(G(i)) ∼= y(limiG(i)), the limit on the right-hand side is
being taken in C (hence the assumption that I-shaped limits exist in C) and the limit

on the left-hand side is being taken in Ĉ (so we’ll use our work from (a) and (b)).

2
Enough talk, let’s do some math. Suppose we have F : I → Ĉ such that limi Fi exists.
That is, we have a presheaf (limi Fi) : Cop → Set and natural transforms ρj : limi Fi → Fj
satisfying the universal mapping property of limits in Ĉ. Among the numerous other
properties of limits we’ve proved, we have the following.

Limit-Homset Formula For any presheaf Z ∈ Ĉ, there is a bijection

Hom(Z, lim
i
Fi) ∼= lim

i
Hom(Z, Fi)

natural in Z.
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Combining this with the Yoneda Lemma, we can articulate what the object part of
limi Fi needs to be: for any object X of C,

(lim
i
Fi)(X) ∼= Hom(y(X), lim

i
Fi) (Yoneda Lemma)

∼= lim
i
Hom(y(X), Fi) Limit-Homset Formula

∼= lim
i

(Fi(X)) (Yoneda Lemma)

= L(X) Defn L

So we get that the action of limi Fi on objects must essentially be that of L. 4

To see that the action of limi Fi on morphisms must be essentially the same as that
of L, observe that each isomorphism in the chain above witnessing that (limi Fi)(X) ∼=
limi(Fi(X)) is natural in X: we know that the bijection from the Yoneda Lemma is

natural in X, and the Limit-Homset Formula is natural in its argument. 5 So we have
a natural iso

Φ : lim
i
Fi

∼−→ L.

In particular, for any morphism u : X → Y in C, we have:

ΦX ◦ (lim
i
Fi)(u) = L(u) ◦ ΦY .

Or, remembering that ΦX is an iso and that L(u) = limi(Fi(u)), we get:

(lim
i
Fi)(u) = Φ−1X ◦ lim

i
(Fi(u)) ◦ ΦY .

Thus, the morphism part of limi Fi is the same as L (up to natural iso). 6 In
conclusion: in order to satisfy the universal property of limits, limi Fi must essentially
be defined pointwise.

3
(b) is more straightforward: we have the presheaf L : Cop → Set defined pointwise using
limits in Set, and we want to show it satisfies the universal property of limits. Start
by defining the projections: for each i ∈ I, define ρi : L → Fi by (ρi)X = pXi , the i-th
projection out of L(X) = limi(Fi(X)). This is indeed natural: the square

L(X) Fj(X)

L(Y ) Fj(Y )

(ρj)X

L(u)

(ρj)Y

Fj(u)

commutes for each u : X → Y in C and each j because L(u) is defined as 〈Fi(u) ◦ pYi |
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i ∈ I〉 = 〈Fi(u) ◦ (ρi)Y | i ∈ I〉, and

(ρj)X ◦ 〈Fi(u) ◦ (ρi)Y | i ∈ I〉
= pXj ◦ 〈Fi(u) ◦ (ρi)Y | i ∈ I〉
= Fj(u) ◦ (ρj)Y

where the last step follows from the commutativity of the triangles in the limit cone on
the diagram F(−)(X) : I → Set. It’s similarly easy to check that the ρj maps constitute
a cone on F : for any s : i→ j in I and any object X of C,

(F (s) ◦ ρi)X = (Fs)X ◦ (ρi)X (Composition of nat. transforms)

= (Fs)X ◦ pXi
= pXj (the pX are a cone on F(−)(X))

= (ρj)X

so, since the X components of F (s) ◦ ρi and ρj are the same for every X,

F (s) ◦ ρi = ρj 7 and thus the ρjs constitute a cone on F .

To see that L and the ρjs form a limit cone, pick another cone

ηj : P → Fj.

It suffices to define what 〈ηi | i ∈ I〉 : P → L is, and show that it satisfies the
necessary properties. 8 We define it pointwise: for X an object of C,

〈ηi | i ∈ I〉X = 〈(ηi)X | i ∈ I〉 : P (X)→ L(X).

First, we must show that ρj ◦ 〈ηi | i ∈ I〉 = ηj for each j in I. Again, this is done
componentwise:

(ρj)X ◦ 〈ηi | i ∈ I〉X
= pXj ◦ 〈(ηi)X | i ∈ I〉
= (ηj)X

as desired. Finally, it suffices to show that for ψ : P → L, we have ψ = 〈ρi ◦ψ | i ∈ I〉.
But this is the case if, for every X,

ψX = 〈(ρi ◦ ψ)X | i ∈ I〉.

But this equation holds by the universal property of L(X) as the limit of the
Fi(X)s. 9 So we’re done.

Since I and F were arbitrary, we can conclude that Ĉ has all small limits.

4
So we’ve shown that Pointwise Defn is how limits in Ĉ must be defined, so from here
on out we’ll take that to be the definition of limi Fi. Now let’s turn our attention to (c):
suppose we instead have an I-shaped diagram G in C itself such that limiG(i) exists.



5

We want to show that the Yoneda embedding preserves this limit, i.e. that

lim
i
y(G(i)) ∼= y(lim

i
G(i)). 3

So it doesn’t matter if we take the limit in C and then use Yoneda to embed it into
Ĉ, or embed it in Ĉ first and then take the limit – either way we get the same result.

To do this, again take an arbitrary object X of C and observe:

(lim
i
y(G(i)))(X)

= lim
i

(y(Gi)(X)) Pointwise Defn

= lim
i
Hom(X,Gi)

∼= Hom(X, lim
i
Gi) Limit-Homset Formula

∼= Hom(y(X), y(lim
i
Gi)) (Yoneda 10 )

∼= (y(lim
i
Gi))(X). (Yoneda 10 )

We can check that this is natural inX, again by the naturality of the Limit-Homset Formula
and the naturality of the Yoneda Lemma. So we have exhibited a natural iso between
limi y(Gi) and y(limiGi), so, since G and I were arbitrary, y preserves all small limits.

Notes:

1 For instance, the LATEX code

(abcd(\widehat{efg(hij(klm)no)pq}rs)tu)vwxyz

produces this:

(abcd( ̂efg(hij(klm)no)pqrs)tu)vwxyz

Note that the hat is nowhere near the ‘e’, where it’s nominally supposed to begin. There
are some workarounds (e.g https://tex.stackexchange.com/questions/100574/really-wide-
hat-symbol), but this is why I like y. A similar issue arises for the over-tildes used for
the exponential transpose (“currying”), hence why I also changed that to usual functor
notation in my lambda calculus lecture.

2 This is one of the major reason we’re interested in Ĉ: regardless of whether C has limits,

colimits, and exponentials, Ĉ has all those things. So, in order to prove stuff about C,

we can instead use all the nice structure of Ĉ to prove the result we want about objects

of Ĉ, and then use the Yoneda Principle to transfer these consequences back to C.

This is very much analogous to the classic mathematical technique of (a) taking a
problem which cannot be easily solved in the real numbers and viewing it in the complex
numbers, (b) using the extra structure of the complex numbers to find a real solution
to the problem, and then (c) forgetting about the intervening complex-numbers-y stuff
and just taking the real solution as-is. This is useful for pure math, and also for applied
stuff: for example, lots of electrical engineering involves solving problems in complex

https://tex.stackexchange.com/questions/100574/really-wide-hat-symbol
https://tex.stackexchange.com/questions/100574/really-wide-hat-symbol
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numbers (because eiθ has much nicer algebraic properties than sin(θ) and cos(θ)), and
then taking the real part at the end of the day, as if you were working with real cosines
the whole time. In category theory, we take problems which are hard to solve natively

in C, inject them (using the Yoneda embedding) into Ĉ to solve them using the extra

features of Ĉ, and then argue that the solution we get is “real”, i.e. representable, and
therefore existed in C all along.

3

lim
i
Ĝ(i) ∼= ̂lim

i
G(i)

4 For (a), this is basically all I was looking for, because it articulates in explicit detail
what (limi Fi)(X) must be (up to iso) for each object X. In particular, it says essentially
what the object part of limi Fi must be, and specifies in terms of things we already know
how to do (applying the functors Fi and taking limits in Set).

Several of you stopped just short of this conclusion, e.g. concluding that

(lim
i
Fi)(X) ∼= lim

i
Hom(y(X), Fi).

While this does show some of the key steps and does give me more information about
what limi Fi is, this is not a finished answer. limi Hom(y(X), Fi) is still a very sophisti-
cated expression (a limit of sets of natural transformations of presheaves), and difficult
to calculate explicitly (figuring out what Hom(y(X), Fi) is directly without first con-
verting it to limi(Fi(X)) can be quite hard in general).

5 The composition of natural transforms is again a natural transform (paste together the
naturality squares).

6 As with the objects, specifying the morphism part (up to conjugation with the natural
transformation Φ) is enough to tell us everything we need to know about limi Fi.

7 I’m using a kind of “extensionality” for natural transforms: if β and η are natural
transforms such that

βX = ηX

for all objects X of the appropriate category (dom(dom(β))), then

β = η.

In other words, all there is to a natural transformation are its components.

8 Another way to phrase the universal property of limits: given a J-shaped diagram E
and a cone (pj : L→ E(j))j∈J ∈ Cone(E,L), the following are equivalent:

1. (pj)j∈J is a limit cone for E

2. There exists an operation

〈−〉 : Cone(E,Z)→ Hom(Z,L)

such that

pj0 ◦ 〈fj | j ∈ J〉 = fj0 (For all cones (fj : Z → E(j))j∈J and all j0 ∈ J)

〈pj ◦ k | j ∈ J〉 = k (For all k : Z → L)
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9 Formulated as in 8 .

10 The first of these uses the ‘stronger’ form of the Yoneda Lemma (that Hom(y(−), F ) ∼= F
for all presheaves F ), while the second uses the ‘weaker form’ (that y is full and faithful).
I generally like to call the latter as the ‘Yoneda Theorem’, which is proved using the
stronger form, which to me is the Yoneda Lemma.


