
Lecture 27
Principles of Functional Programming

Summer 2020

Final Review
A long list of things you already know

Section 1

Reasoning About Code

Jacob Neumann Final Review 24 June 2020 2 / 34

Reasoning About Code

Mathematically articulate the structure of our code

Deduce its properties

Jacob Neumann Final Review 24 June 2020 3 / 34

Evaluation

Value:
fn () => 1 div 0

Valuable:

let val x = 2+2 in fn () => x div 0 end

Raises exception

(fn () => 1 div 0) ()

Jacob Neumann Final Review 24 June 2020 4 / 34

Extensional Equivalence

Jacob Neumann Final Review 24 June 2020 5 / 34

Totality & Nontotality

A total function is one which is guaranteed to evaluate to a value when
applied to any value of the input type

map g (f(x)::map f xs)

∼= g(f(x)) :: map g (map f xs)

(defn map, totality of f,totality of map f)

If a function f is not assumed to be total, then we need to justify this
kind of steps with lengthy reasoning about why the two sides are
extensionally equivalent. If we can avoid this, it’s nice to.

Jacob Neumann Final Review 24 June 2020 6 / 34

Effects

Exceptions are a kind of effect:

(fn _ => raise Fail "Unimplemented") [1,2]

This expression doesn’t evaluate to a value!

We also have actual effects:

r := 1

Reasoning about effects makes the code more complicated!

Jacob Neumann Final Review 24 June 2020 7 / 34

Cost Semantics

Another way we reason mathematically about code: quantifying the
runtime.

Wmsort(n) is O(n log n)

In addition to the sequential runtime (work), we had the parallel runtime
(span) which assumed we took advantage of every opportunity for
parallelism, and had unlimited processors.

Smsort(n) is O(log2(n))

Jacob Neumann Final Review 24 June 2020 8 / 34

Section 2

Recursion

Jacob Neumann Final Review 24 June 2020 9 / 34

Datatypes, Pattern Matching, and Recursion

Recursively construct data:

datatype ’a list =

[] | :: of ’a * ’a list

datatype ’a tree =

Empty | Node of ’a tree * ’a * ’a tree

Pattern match to recursively deconstruct:

fun foo [] = ...

| foo (x::xs) = ... foo xs ...

Inductively establish correctness

Solve for runtime by recurrence

Jacob Neumann Final Review 24 June 2020 10 / 34

Higher Order Functions

fun map f [] = []

| map f (x::xs) =

(f x)::map f xs

fun filter p [] = []

| filter p (x::xs) =

if (p x)

then x:: filter p xs

else filter p xs

fun foldl g z [] = z

| foldl g z (x::xs) =

foldl g (g(x,z)) xs

Jacob Neumann Final Review 24 June 2020 11 / 34

Structural Induction (copied from Lect 7)

IS T=Node(L,x,R) for some values L,R:tree and x:int

IH1 rev(inord L) ∼= inord(revTree L)

IH2 rev(inord R) ∼= inord(revTree R)

rev(inord (Node(L,x,R)))

∼= rev((inord L)@(x::(inord R))) (defn inord)

∼= (rev (x::inord R)) @ (rev(inord L)) (Lemma 1,2)

∼= ((rev (inord R))@[x]) @ (rev(inord L))

(Lemma 2 , defn of rev)

∼= (rev (inord R))@(x::(rev(inord L)))

(Lemma 2,3,4)

Jacob Neumann Final Review 24 June 2020 12 / 34

1 Recurrence:

W (0) = k0

W (n) = k1 + k2n+W (n− 1)

2 Work Tree

3 Measurements
Height: n Work on the i-th level: k1 + k2(n− i)

4 Sum:

W (n) ≈ k0 +

n∑
i=0

(k1 + k2(n− i)) = . . .

5 Big O:
W (n) is O(n2)

Jacob Neumann Final Review 24 June 2020 13 / 34

Functions Are Accumulators

factCPS : int -> (int -> ’a) -> ’a

REQUIRES: n ≥ 0
ENSURES: factCPS n k ∼= k(fact n)

fun factCPS 0 k = k 1

| factCPS n k =

factCPS (n-1) (fn res => k(n*res))

Jacob Neumann Final Review 24 June 2020 14 / 34

Section 3

Data Representation

Jacob Neumann Final Review 24 June 2020 15 / 34

Datatypes

Options

fun hd [] = NONE

| hd (x::_) = SOME x

Order

case Int.compare(x,y) of

LESS => ...

| EQUAL => ...

| GREATER => ...

Extended integers

datatype int ’ = NEGINF

| FIN of int

| POSINF

Jacob Neumann Final Review 24 June 2020 16 / 34

Representing Regular Expressions

datatype ’’a regexp =

Const of ’’a

| One

| Zero

| Times of ’’a regexp * ’’a regexp

| Plus of ’’a regexp * ’’a regexp

| Star of ’’a regexp

match : ’’a regexp

-> ’’a list

-> (’’a list * ’’a list -> ’b)

-> ’b

Jacob Neumann Final Review 24 June 2020 17 / 34

Representing Programs

datatype cExp =

SKIP

| ASSIGNB of string * bExp

| ASSIGNI of string * iExp

| THEN of cExp * cExp

| IFTHENELSE of bExp* cExp *cExp

| WHILE of bExp * cExp

| RETURN of iExp

fun interpret (input:cExp)

(panic:error -> ’a)

(success : int -> ’a)

: ’a = ...

Jacob Neumann Final Review 24 June 2020 18 / 34

Data Structures

structure LLQ :> QUEUE =

struct

(* INVARIANT: if (f,b):’a queue , then the

list f@(rev b) lists the elements of the

queue in their queueing order *)

type ’a queue = (’a list * ’a list)

...

Jacob Neumann Final Review 24 June 2020 19 / 34

Section 4

Abstraction

Jacob Neumann Final Review 24 June 2020 20 / 34

Abstraction

Idea:
Make functions more general by “abstracting” away details: replace by

variable name, and take in a value for that variable as an argument.

Jacob Neumann Final Review 24 June 2020 21 / 34

Polymorphism

fun len ([] : ’a list):int = 0

| len (x::xs) = 1+(len xs)

The ’a can be instantiated with whatever type we want!

The value fn (x,y)=>y can be used as a value of type
int * int -> int, or string*bool -> bool , and so on.

Jacob Neumann Final Review 24 June 2020 22 / 34

Lambda Abstraction

fn f => fn x => fn y => f(x,y)

The f can be instantiated with whatever value we want (if its MGT is
an instance of ’a * ’b -> ’c)!

Lambda abstract comparison function

fun merge cmp (L1 ,L2) = ...

Lambda abstract predicate function

fun filter p L = ...

Lambda abstract other function

fun map f L = ...

Jacob Neumann Final Review 24 June 2020 23 / 34

Lambda Abstract Typeclasses

signature ORD_SHOW =

sig

type t

val compare : t * t -> order

val toString : t -> string

end

functor MkEstimator(

structure Game : GAME

structure Guess : ORD_SHOW

val estimate : Game.state -> Guess.t

) : ESTIMATOR = ...

Jacob Neumann Final Review 24 June 2020 24 / 34

Section 5

Suspension and Control

Jacob Neumann Final Review 24 June 2020 25 / 34

Lambda Suspension

Functions are values. One of the things we mean by this statement is
the fact that well-typed expressions of the form

fn x => e

are values. Therefore, e does not get evaluated until this function value
is applied(the evaluation of e is “suspended behind the lambda”).

We use suspended computations for a variety of purposes.

Jacob Neumann Final Review 24 June 2020 26 / 34

CPS Control Flow

fun search p Empty sc fc = fc ()

| search p (Node(L,x,R)) sc fc =

if p x then sc x else

search p L sc (fn () =>

search p R sc fc)

fun search p Empty sc fc = fc ()

| search p (Node(L,x,R)) sc fc =

if p x then sc(x,[]) else

search p L

(fn (res ,dirs) => sc(res ,Left::dirs))

(fn () =>

search p R

(fn (res ,dirs) =>sc(res ,Right ::dirs))

fc

)

Jacob Neumann Final Review 24 June 2020 27 / 34

Super CPS

fun iterate (check : ’a -> result)

(L : ’a list) (combine : ’a -> ’b -> ’b)

(base : ’b) (success : ’a -> ’c)

(panic : string -> ’c) (return : ’b -> ’c)

: ’c =

let

fun run ([] : ’a list) (k:’b -> ’c) : ’c =

k base

| run (x::xs) k = (case (check x) of

Accept => success x

| Keep => run xs (k o (combine x))

| Discard => run xs k

| (Break s)=> panic s)

in

run L return

end

Jacob Neumann Final Review 24 June 2020 28 / 34

Exceptions

exception NotFound

fun search p Empty sc = raise NotFound

| search p (Node(L,x,R)) sc =

(if p x then sc x else

search p L sc)

handle NotFound =>

search p R sc

Jacob Neumann Final Review 24 June 2020 29 / 34

Laziness

datatype ’a stream =

Stream of unit -> ’a front

and ’a front =

Nil | Cons of ’a * ’a stream

fun natsFrom k =

Stream.delay(fn () => natsFrom ’ k)

and natsFrom ’ k =

Stream.cons(k,natsFrom (k+1))

val nats = natsFrom 0

Jacob Neumann Final Review 24 June 2020 30 / 34

Conclusions

Think about code

Do incredible things.

Jacob Neumann Final Review 24 June 2020 31 / 34

Advice for studying/taking exam

Quizzes are closest in format to final (the final’s just a really long
quiz). But lab content is also definitely worth going over.

Problems won’t generally be more difficult than early hw problems,
lab problems, or most lecture examples. There won’t be anything
on the scale of some of the later hw problems or the whole-lecture
examples we did a few of.

Write your own review lecture & final (try to come up with your
own examples of the phenomena we talked about)

Come to conceptual OH to review content, put yourself on the
queue to discuss you-specific stuff (e.g. why your solution lost
points).

I’ll put out some data about hw/quiz/lab scores, but time spent
running numbers is time wasted.

I believe that all of you learned functional programming and I want
to give you a good grade. I just need an excuse to do so...

Jacob Neumann Final Review 24 June 2020 32 / 34

end

So,

Thank you for being amazing

Good luck on the final (you
got this!)

Relax & enjoy the rest of your
summer

Jacob Neumann Final Review 24 June 2020 33 / 34

THANK YOU!

Jacob Neumann Final Review 24 June 2020 34 / 34

	Reasoning About Code
	Recursion
	Data Representation
	Abstraction
	Suspension and Control

