Lecture 11
Principles of Functional Programming
Summer 2020

/\

o
Staging-‘&?Coﬁbinators

Higher-Order Functions II: Tbkyo
Drift '

CO» «ETF» «E» «E>» = Q>

Section 1

Evaluation and Equivalence of HOFs

Jacob Neumann Staging & Combinators 03 June 2020 2/22

HOFs are trivially total

map is total

Foranyvaluef :otl o -> t2,

map f = fn [] => [] | x::xs =>

O
filter is total
Foranyvaluep : t -> bool,
filter p=—fn [1 => []1 | x::xs8 =>
O

Jacob Neumann Staging & Combinators 03 June 2020 3/22

Higher-Order Totality?

A more interesting claim:

For any types t1,t2 and any total £ : t1 -> t2,
map £ is total.

By structural inductionon L : t1 list

Ed.-0

map f []1 = []

L=x::xs for some x:t1 and some xs:t1 list
map f xs < vs for some value vs:t2 list

map f (x::xs)

= (f x)::map f xs (defn map)

— (f x)::vs

= V::VS (£ is total)
for some value v : t2.

Jacob Neumann Staging & Combinators 03 June 2020 4/22

ForaII total values £ : t1 -> t2,
len o (map f) = len
It suffices to show that for all values L : t1 1list,
(len o (map f)) L= 1len L

where the right-hand side, by defn of o, is equivalent to
len(map f L). We prove this by structural induction on L.

Ed.-0

len(map £ [])
= len [] (defn of map)

Jacob Neumann Staging & Combinators 03 June 2020 5/22

ForaII total values £ : t1 -> t2,

len o (map f) = 1len

Proof (continued)

L=x::xs for some
len(map f xs)

X
~

:tl1 and some xs:t1 list

len xs

len(map f (x::xs))

~len((f x)::map f xs)

~1 + len(map f xs)

=1 + len xs

~Jlen(x::x8)

Jacob Neumann

Staging & Combinators

(defn of map)

(totality of £, [LILNEN)

(defn of 1en)

03 June 2020

6/22

Section 2

Jacob Neumann Staging & Combinators 03 June 2020 7/22

What's the difference?

1 | (x square : int -> int
2| * ENSURES: square n ==> n * n, but it takes a
long time x*)

s | (x exl,ex2 : int -> int -> int
5 * REQUIRES: x>=0

¢ | * ENSURES: exl x y == (x*x)+y
7| * ex2 x y == (x*x)+y
8 *)

o |[fun exl1l x y =

10 let

11 val xsq = square X

12 in

13 xsq + y

14 end

15 [fun ex2 x =

Jacob Neumann Staging & Combinators 03 June 2020 8/22

Staging is delibrately structuring a curried function to perform
computations once certain arguments are obtained.

fun foo x =
let
val vl = horribleComputation x
in
(fn y =>
let
val v2 = otherHorribleComp(vl,y)
in
fn z => z + vl + v2
end

end

Jacob Neumann Staging & Combinators 03 June 2020 9/22

Section 3

Runtime Analysis of HOFs

Jacob Neumann Staging & Combinators 03 June 2020 10/22

Combine all the elements of a list

foldr (’a * ’b -> ’b)

b
REQUIRES: g is total

g(xl,g(...,g(xn,acc)...))

->

ENSURES: foldr g acc [x1,...

’b -> ’a list -> 2

,xn] =

11.1

1 |fun foldr g acc [] = acc

2 | foldr g acc (x::xs) = g(x,foldr g acc xs)
3

2 |val sum = foldr (op +) O

s |[val prod = foldr (op *) 1

s |[val strConcat = foldr (op ~) "'

7 |val listConcat = foldr (op @) []

Jacob Neumann

Staging & Combinators

03 June 2020

11/22

foldr (op*) ll!ll [IIHH,HEII,IILII’HLII’HOH]
ﬁ”H”A(fOldr (Op*) n!u [IIEII’||LH’IILII’|IDH])

— "H"~("E""(foldr (op™) "!" ["L","L","0"1))

—s "H"~("E"~("L"~(foldr (op~) "!" ["L","0"1)))

— "H"~("E"~("L"~("L"~(foldr (op™) "!" ["0"1))))
— "HY~("E" ("L~ ("L"(0"~ (foldr (op™) "I [1)))]
— "H" T ("E" " ("L" ("L ("0 1))

= "HELLO!"

Jacob Neumann Staging & Combinators 03 June 2020 12/22

Analysis of strConcat

1 |[fun foldr g acc [] = acc
2 | foldr g acc (x::xs) = g(x,foldr g acc xs)

« |val sum = foldr (op +) O

s [val prod = foldr (op *) 1

¢ |[val strConcat = foldr (op ~)
7 |val listConcat = foldr (op @) []

0 Notion of size: length of input list
1 Recurrence:

k
Wsc(n) = kil + Wsc(n — 1)
2.4

5 Wse(n) is O(n)

Jacob Neumann Staging & Combinators 03 June 2020 13 /22

Analysis of 1istConcat

1 |[fun foldr g acc [] = acc
2 | foldr g acc (x::xs) = g(x,foldr g acc xs)

« |val sum = foldr (op +) O

s [val prod = foldr (op *) 1

¢ |[val strConcat = foldr (op ~) "'
7 |val listConcat = foldr (op @) []

0 Size of input: input contains n lists, each of length at most m
1 Recurrence:

W]_c(o, m) = k‘o
Wic(n,m) = k1 + Wic(n — 1,m) + ksm
2.4
5 Wic(n,m) is O(nm)

Jacob Neumann Staging & Combinators 03 June 2020 14 /22

Section 4

Combinators

Jacob Neumann Staging & Combinators 03 June 2020 15/22

Binary Operations

In mathematics and computer science, a binary operation is a function®
(often written infixed) which takes two “things” of the same “kind” and
“combines” them into another thing of that “kind".

Mathematical Examples:

m + is a binary operation on complex numbers

m U is a binary operation on sets

m X is a binary operation on 3-dimensional vectors
SML examples

m div is a (partial) binary operation on ints

m “Tupling” or “pairing” is a binary operation on expressions: if el
and e2 are expressions, (el,e2) is an expression

m Composition is a binary operation on functions

LOr function-like thing

Jacob Neumann Staging & Combinators 03 June 2020 16 /22

Stick two functions together

(op o) : (b => ’¢c) * (’a -> ’b) ->(’a -> ’c)
REQUIRES: true

ENSURES: (g o £) = h such that h(x) = g (£ (x)) for all
suitably-typed x

11.2

1 [infix o
2 |[fun (g o £f) x = g(£f(x))
3| (x OR: fun (g o f) = fn x => g(£f(x)) *)

s [val collapse : int 1list -> string
6 = concat o (map Int.toString)

Jacob Neumann Staging & Combinators 03 June 2020 17 /22

11.3

+ | fun zip([1,_)=I[]

2 | zip(_,[1)=I[1]

3 | zip(x::xs,y::ys) = (x,y) :: zip(xs,ys)

s |[val dotProd = (foldr op+ 0) o (map op*) o zip

7 | Ck (1%4) + (2%5) + (3%6) *)
s |val 32 dotProd ([1,2,3]1,[4,5,6]1)
9 |val 32 dotProd ([1,2,3],[4,5,6,7])

Jacob Neumann Staging & Combinators 03 June 2020 18/22

Some other binary ops

11.7

1| infix &&& ***
2 |fun f &&& g
3 [fun f *** g

fn x => (f x, g x)
fn (x,y) => (f x,g y)

s |fun listToString toStr L =

6 wpnoo

7 (String.concatWith "," (map toStr L)) ~

8 nyn

9 |val strAndLen =

10 (1listToString Int.toString) &&& List.length

1 |val format =

12 (fn (s,1) =>

13 "The list " =~ s - " has length " ~ (Int.
toString 1)

14) o strAndLen

Jacob Neumann Staging & Combinators 03 June 2020 19/22

Function Application Pipe

11.4

1 |infix | >

> | fun x |> £ = f x
11.5

1 [fun dotProd’ (L1,L2) =

3 (L1,L2) (* int list * int list x*)
4 |> zip (¥ (int * int) 1list *)
5 |> map opx* (* int list *)
6 |> foldr (op+) 0 (% int *)

s |val 32 = dotProd’ ([1,2,3],[4,5,6])

Jacob Neumann Staging & Combinators 03 June 2020 20/22

Check for understanding: mappartial

1 |fun isSome NONE = false
2 | isSome _ = true

4 [fun valOf NONE = raise Option

5 | val0f (SOME x) = x

6

7 |fun mappartial f L =

8 L | > map f [> filter isSome | >

map valOf

Jacob Neumann Staging & Combinators 03 June 2020 21/22

Thank you!

Jacob Neumann Staging & Combinators 03 June 2020 22/22

	Evaluation and Equivalence of HOFs
	Staging
	Runtime Analysis of HOFs
	Combinators

