
Lecture 11
Principles of Functional Programming

Summer 2020

Staging & Combinators
Higher-Order Functions II: Tokyo
Drift

Section 1

Evaluation and Equivalence of HOFs

Jacob Neumann Staging & Combinators 03 June 2020 2 / 22

HOFs are trivially total

Thm. 1 map is total

Proof For any value f : t1 -> t2,

map f =⇒ fn [] => [] | x::xs => ...

�
Thm. 2 filter is total

Proof For any value p : t -> bool ,

filter p =⇒ fn [] => [] | x::xs => ...

�

Jacob Neumann Staging & Combinators 03 June 2020 3 / 22

Higher-Order Totality?

A more interesting claim:
Thm. 3 For any types t1 ,t2 and any total f : t1 -> t2,
map f is total.
Proof By structural induction on L : t1 list

BC L=[]

map f [] =⇒ []

IS L=x::xs for some x:t1 and some xs:t1 list

IH map f xs ↪→ vs for some value vs:t2 list

map f (x::xs)

=⇒ (f x)::map f xs (defn map)

=⇒ (f x)::vs IH

=⇒ v::vs (f is total)

for some value v : t2.
Jacob Neumann Staging & Combinators 03 June 2020 4 / 22

Thm. 4 For all total values f : t1 -> t2,

len o (map f) ∼= len

Proof It suffices to show that for all values L : t1 list ,

(len o (map f)) L ∼= len L

where the right-hand side, by defn of o, is equivalent to
len(map f L). We prove this by structural induction on L.
BC L=[]

len(map f [])

=⇒ len [] (defn of map)

Jacob Neumann Staging & Combinators 03 June 2020 5 / 22

Thm. 4 For all total values f : t1 -> t2,

len o (map f) ∼= len

Proof (continued)

IS L=x::xs for some x:t1 and some xs:t1 list

IH len(map f xs) ∼= len xs

len(map f (x::xs))

∼= len((f x)::map f xs) (defn of map)

∼= 1 + len(map f xs) (totality of f, Thm. 3)

∼= 1 + len xs IH
∼= len(x::xs) (defn of len)

Jacob Neumann Staging & Combinators 03 June 2020 6 / 22

Section 2

Staging

Jacob Neumann Staging & Combinators 03 June 2020 7 / 22

What’s the difference?

11.0

1 (* square : int -> int

2 * ENSURES: square n ==> n * n, but it takes a

long time *)

3

4 (* ex1 ,ex2 : int -> int -> int

5 * REQUIRES: x>=0

6 * ENSURES: ex1 x y == (x*x)+y

7 * ex2 x y == (x*x)+y

8 *)

9 fun ex1 x y =

10 let

11 val xsq = square x

12 in

13 xsq + y

14 end

15 fun ex2 x =

16 let

17 val xsq = square x

18 in

19 fn y => xsq + y

20 end

Jacob Neumann Staging & Combinators 03 June 2020 8 / 22

Staging

Staging is delibrately structuring a curried function to perform
computations once certain arguments are obtained.

fun foo x =

let

val v1 = horribleComputation x

in

(fn y =>

let

val v2 = otherHorribleComp(v1 ,y)

in

fn z => z + v1 + v2

end

)

end

Jacob Neumann Staging & Combinators 03 June 2020 9 / 22

Section 3

Runtime Analysis of HOFs

Jacob Neumann Staging & Combinators 03 June 2020 10 / 22

Combine all the elements of a list

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’

b

REQUIRES: g is total
ENSURES: foldr g acc [x1 ,...,xn] ∼=
g(x1 ,g(...,g(xn ,acc)...))

11.1

1 fun foldr g acc [] = acc

2 | foldr g acc (x::xs) = g(x,foldr g acc xs)

3

4 val sum = foldr (op +) 0

5 val prod = foldr (op *) 1

6 val strConcat = foldr (op ^) ""

7 val listConcat = foldr (op @) []

Jacob Neumann Staging & Combinators 03 June 2020 11 / 22

foldr (op^) "!" ["H","E","L","L","O"]

=⇒ "H"^(foldr (op^) "!" ["E","L","L","O"])

=⇒ "H"^("E"^(foldr (op^) "!" ["L","L","O"]))

=⇒ "H"^("E"^("L"^(foldr (op^) "!" ["L","O"])))

=⇒ "H"^("E"^("L"^("L"^(foldr (op^) "!" ["O"]))))

=⇒ "H"^("E"^("L"^("L"^("O"^(foldr (op^) "!" [])))))

=⇒ "H"^("E"^("L"^("L"^("O"^"!"))))

=⇒ "HELLO!"

Jacob Neumann Staging & Combinators 03 June 2020 12 / 22

Analysis of strConcat

11.1

1 fun foldr g acc [] = acc

2 | foldr g acc (x::xs) = g(x,foldr g acc xs)

3

4 val sum = foldr (op +) 0

5 val prod = foldr (op *) 1

6 val strConcat = foldr (op ^) ""

7 val listConcat = foldr (op @) []

0 Notion of size: length of input list

1 Recurrence:

WsC(0) = k0

WsC(n) = k1 +WsC(n− 1)

2..4

5 WsC(n) is O(n)

Jacob Neumann Staging & Combinators 03 June 2020 13 / 22

Analysis of listConcat

11.1

1 fun foldr g acc [] = acc

2 | foldr g acc (x::xs) = g(x,foldr g acc xs)

3

4 val sum = foldr (op +) 0

5 val prod = foldr (op *) 1

6 val strConcat = foldr (op ^) ""

7 val listConcat = foldr (op @) []

0 Size of input: input contains n lists, each of length at most m

1 Recurrence:

WlC(0,m) = k0

WlC(n,m) = k1 +WlC(n− 1,m) + k3m

2..4

5 WlC(n,m) is O(nm)

Jacob Neumann Staging & Combinators 03 June 2020 14 / 22

Section 4

Combinators

Jacob Neumann Staging & Combinators 03 June 2020 15 / 22

Binary Operations

In mathematics and computer science, a binary operation is a function1

(often written infixed) which takes two “things” of the same “kind” and
“combines” them into another thing of that “kind”.
Mathematical Examples:

+ is a binary operation on complex numbers

∪ is a binary operation on sets

× is a binary operation on 3-dimensional vectors

SML examples

div is a (partial) binary operation on ints

“Tupling” or “pairing” is a binary operation on expressions: if e1
and e2 are expressions, (e1,e2) is an expression

Composition is a binary operation on functions

1Or function-like thing
Jacob Neumann Staging & Combinators 03 June 2020 16 / 22

Stick two functions together

(op o) : (’b -> ’c) * (’a -> ’b) ->(’a -> ’c)

REQUIRES: true
ENSURES: (g o f) ∼= h such that h(x) ∼= g(f(x)) for all
suitably-typed x

11.2

1 infix o

2 fun (g o f) x = g(f(x))

3 (* OR: fun (g o f) = fn x => g(f(x)) *)

4

5 val collapse : int list -> string

6 = concat o (map Int.toString)

Jacob Neumann Staging & Combinators 03 June 2020 17 / 22

Using o

11.3

1 fun zip([],_)=[]

2 | zip(_,[]) =[]

3 | zip(x::xs ,y::ys) = (x,y) :: zip(xs,ys)

4

5 val dotProd = (foldr op+ 0) o (map op*) o zip

6

7 (* (1*4) + (2*5) + (3*6) *)

8 val 32 = dotProd ([1,2,3],[4,5,6])

9 val 32 = dotProd ([1,2,3],[4,5,6,7])

Jacob Neumann Staging & Combinators 03 June 2020 18 / 22

Some other binary ops

11.7

1 infix &&& ***

2 fun f &&& g = fn x => (f x, g x)

3 fun f *** g = fn (x,y) => (f x,g y)

4

5 fun listToString toStr L =

6 "[" ^

7 (String.concatWith "," (map toStr L)) ^

8 "]"

9 val strAndLen =

10 (listToString Int.toString) &&& List.length

11 val format =

12 (fn (s,l) =>

13 "The list " ^ s ^ " has length " ^ (Int.

toString l)

14) o strAndLen

Jacob Neumann Staging & Combinators 03 June 2020 19 / 22

Function Application Pipe

11.4

1 infix |>

2 fun x |> f = f x

11.5

1 fun dotProd ’ (L1 ,L2) =

2

3 (L1,L2) (* int list * int list *)

4 |> zip (* (int * int) list *)

5 |> map op* (* int list *)

6 |> foldr (op+) 0 (* int *)

7

8 val 32 = dotProd ’ ([1,2,3],[4,5,6])

Jacob Neumann Staging & Combinators 03 June 2020 20 / 22

Check for understanding: mappartial

11.6

1 fun isSome NONE = false

2 | isSome _ = true

3

4 fun valOf NONE = raise Option

5 | valOf (SOME x) = x

6

7 fun mappartial f L =

8 L |> map f |> filter isSome |>

map valOf

Jacob Neumann Staging & Combinators 03 June 2020 21 / 22

Thank you!

Jacob Neumann Staging & Combinators 03 June 2020 22 / 22

	Evaluation and Equivalence of HOFs
	Staging
	Runtime Analysis of HOFs
	Combinators

