
Propositions-as-Types
& Dependent Types

15-150 M21

Lecture 0811
11 August 2021

0 Propositions-as-Types

Formal logic is the study of propositions, which are formal statements that can
be either true or false.

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ→ ψ | ϕ ∨ ψ

In formal logic, we formalize the reasoning of mathematics by formally proving
propositions.

Propositions-as-Types1

We do so by combining axioms to form deductions. The axioms are
“tautological” (obviously true) statements of logic, e.g.

• ϕ→ ϕ

• ϕ→ ψ → ϕ

• (ϕ→ ψ)→ (ψ → θ)→ ϕ→ θ

• If ϕ and ϕ→ ψ, then ψ

What does this look like?

Propositions-as-Types2

Observation:
Tautologies of Formal Logic

look like HOF types!

Propositions-as-Types

Idea: we’ll associate propositions (statements that can be true or false) with
types: a proposition P is the type of proofs that P is true.

• A proposition P is “true” if it is inhabited: there exists some w : P
witnessing the truth of P .

• An uninhabited type is a “false” proposition: there is no witness/proof of
its truth

Propositions-as-Types5

Purpose:
• Use the tools of type theory/functional programming

to reason about formal logic

• Utilize logic inside of functional programming

Matching up formal logic with type theory

• Can take the conjunction P1 ∧ P2 of two propositions to get another one: P1
and P2. A witness of P1 ∧ P2 consists of a witness to the truth of P1 and a
witness of the truth of P2.

(w1,w2) witnesses the truth of P1 ∧ P2 iff w1 witnesses the
truth of P1 and w2 witnesses the truth of P2

So conjunction is represented by product types

Propositions-as-Types7

Matching up formal logic with type theory

• Can take the disjunction P1 ∨ P2 of two propositions to get another one: P1
or P2. A witness of P1 ∨ P2 consists of either a witness to the truth of P1 or
a witness of the truth of P2.

w witnesses the truth of P1 ∨ P2 iff w witnesses the truth of P1
or w witnesses the truth of P2

So conjunction is represented by sum types:

datatype (’a,’b) plus = inL of ’a | inR of ’b

Propositions-as-Types8

Matching up formal logic with type theory

• The proposition P1 → P2 represents implication: P1 implies P2. A witness
of P1 → P2 is a way of obtaining a witness w ′ : P2, given a witness w : P1.

f witnesses the truth of P1 → P2 iff for all witnesses w of P1,
there’s a witness f (w) of P2

So implication is represented by function types

Propositions-as-Types9

Proving propositions

• P → P
fn p => p

• P → (Q → P)
fn p => fn q => q

• P ∧ Q → P
fn (p,q) => p

Propositions-as-Types10

Matching up formal logic with type theory

• The proposition ¬P represents negation: ¬P means “not P”. A witness of
¬P is a proof by contradiction of P : a witness that, if P were true, then
absurdity would follow.

¬T is defined to be T -> void

where void is the type with no elements:

datatype void = Void of void (* No base case

*)

Propositions-as-Types11

Proving propositions

• (P → Q)→ ¬Q → ¬P
fn g => fn nq => nq o g

• P → ¬¬P
P → (P → ⊥)→ ⊥

fn p => fn np => np(p)

Propositions-as-Types12

Idea: Type Families

T -> Type

Treating >= as a type proposition

In SML,
(op >=) : int * int -> bool

where (m >= n) is true if m is greater-than-or-equal-to n, and false

otherwise.

What if instead we did

(op Geq) : int * int -> Type

where (m Geq n) is inhabited if m is greater-than-or-equal-to n, and
uninhabited otherwise?

Propositions-as-Types14

infix Geq

(* (op Geq) : int * int -> Type *)

fun m Geq 0 = unit

| 0 Geq n = void

| m Geq n =

let

datatype result =

GeqSucc of (m-1) Geq (n-1)

in

result

end

GeqSucc(GeqSucc(GeqSucc ())) : 8 Geq 3

Propositions-as-Types15

fun isNonEmpty [] = void

| isNonEmpty (x::xs) = unit

fun hd (L : ’a list) (p : isNonEmpty L) =

let val x::_ = L in x end

In order to call this, you would need to supply not just L but p. This would be
impossible if L=[], since there are no values p : isNonEmpty [].

Propositions-as-Types16

1 Dependent Types

Type dependency

Notice something funny about the type of this function:

fun hd (L : ’a list) (p : isNonEmpty L) =

The type of the second argument depends on the value of the first. How do we
make sense of this?

Dependent Types17

Pi-Types

Given a type family B : A -> Type , the dependent product type, written

(a : A) -> B(a) or
∏
a:A

B(a)

is the type of functions f, where, for each a:A, f(a) : B(a).

Dependent Types18

Matching up formal logic with type theory

• The proposition ∀xP(x) is universal quantification. A witness of ∀xP(x) is a
way to take an arbitrary x and produce a witness of P(x).

(x : T) -> P(x)

Dependent Types19

Proving propositions

• ∀x(P(x)→ Q(x))→ ∀xP(x)→ ∀xQ(x)

fn pPQ => fn pP => fn x => pPQ x (pP(x))

Dependent Types20

Existential Quantification?

Sigma-Types

Given a type family B : A -> Type , the dependent sum type, written

(a : A, B(a)) or
∑
a:A

B(a)

is the type of pairs (a,b), where a:A and b:B(a).

• The proposition ∃xP(x) is existential quantification. A witness of ∃xP(x) is
some x and a witness of P(x).

Dependent Types22

Proving propositions

• ∀x(P(x)→ Q(x))→ ∃xP(x)→ ∃xQ(x)

fn pPQ => fn (a,pa) => (a,pPQ a pa)

Dependent Types23

fun mulNat (m : int , pm : m Geq 0)

(n : int , pn : n Geq 0)

: (z : int , pz : z Geq 0)

= (m*n, ...)

fun fact (n:int) (pn : n Geq 0)

: (res : int , pres : res Geq 0) =

case n of

0 => (1,())

| _ => mulNat

(n,pn)

(fact (n-1) ((*some p : n-1 Geq 0 *)))

Dependent Types24

Thank you!

	Propositions-as-Types
	Dependent Types

