& Dependent Types

0
D)
S
=
)
o
")
c
.m
K7
o
Q.
O
al

15-150 M21

Lecture 0811
11 August 2021

0 Propositions-as- Types

Formal logic is the study of propositions, which are formal statements that can
be either true or false.

pui=plow|pAY |l =Y | VY

In formal logic, we formalize the reasoning of mathematics by formally proving
propositions.

1 Propositions-as-Types

We do so by combining axioms to form deductions. The axioms are
“tautological” (obviously true) statements of logic, e.g.

=

=Y =
(p=¥) = (W —=0) = p—0
If © and © — 1), then

What does this look like?

2 Propositions-as- Types

Tautologies of Formal Logic
look like HOF types!

Propositions-as- ypes

Idea: we'll associate propositions (statements that can be true or false) with
types: a proposition P is the type of proofs that P is true.

A proposition P is “true” if it is inhabited: there exists some w : P
witnessing the truth of P.

An uninhabited type is a “false” proposition: there is no witness/proof of
its truth

Use the tools of type theory/functional programming
to reason about formal logic

Utilize logic inside of functional programming

Can take the conjunction Py A P> of two propositions to get another one: P;
and P,. A witness of P; A P, consists of a witness to the truth of Py and a
witness of the truth of P,.

(wl, w2) witnesses the truth of P; A P, iff wy witnesses the
truth of P; and wy, witnesses the truth of P»

So conjunction is represented by product types

7 Propositions-as Types

Can take the disjunction Py VV Py of two propositions to get another one: P;
or P>. A witness of P; V Py consists of either a witness to the truth of Pq or

a witness of the truth of P;.

w witnesses the truth of P; VV P, iff w witnesses the truth of P;
or w witnesses the truth of P,

So conjunction is represented by sum types

The proposition P; — P represents implication: Py implies P>. A witness
of P — P is a way of obtaining a witness w’ : Py, given a witness w : P;.

f witnesses the truth of P; — P, iff for all witnesses w of P,
there's a witness f(w) of P,

So implication is represented by function types

O Propositions-as- Types

P— P
fn p =>rp

P—(Q— P)
fn p => fn q => q

PANQ@— P
fn (p,q) =>p

10 VPSR

The proposition =P represents negation: =P means “not P". A witness of
=P is a proof by contradiction of P: a witness that, if P were true, then

absurdity would follow.

—T is definedto be T -> void

where void is the type with no elements:
void = Void

(P— Q) —-Q— —P
fn g =>fn nq =>nq o g

P — ——P

P—(P—1)— L
fn p => fn np => np(p)

12 TR

Type Families

T -> Type

In SML,
(op >=) : int * int -> bool

where (m >= n) is true if m is greater-than-or-equal-to n, and false
otherwise.

What if instead we did
(op Geq) : int * int -> Type

where (m Geq n) is inhabited if m is greater-than-or-equal-to n, and
uninhabited otherwise?

14 Propositions-as-Types

Geq
m Geq O
| 0 Geq n
| m Geq n

result =

GeqgSucc (m-1) Geq (n-1)

result

GeqSucc (GeqSucc (GeqSucc())) : 8 Geq 3

isNonEmpty []
| isNonEmpty (x::

In order to call this, you would need to supply not just L. but p. This would be
impossible if L=[], since there are no values p : isNonEmpty [].

16 VTR

1 Dependent Types

Notice something funny about the type of this function:

) (p : isNonEmpty L) =

The type of the second argument depends on the value of the first. How do we
make sense of this?

Given a type family B : A -> Type, the dependent product type, written
(a : A) -> B(a) o]]B(2)
a:A

is the type of functions f, where, for each a: A, f(a) : B(a).

The proposition VxP(x) is universal quantification. A witness of VxP(x) is a
way to take an arbitrary x and produce a witness of P(x).

(x : T) -> P(x)

Vx(P(x) = Q(x)) — VxP(x) — VxQ(x)
fn pPQ => fn pP => fn x => pPQ x (pP(x))

Existential Quantification?

Given a type family B : A -> Type, the dependent sum type, written
(a : A, B(a)) or > B(a)
a:A

is the type of pairs (a,b), where a: A and b:B(a).

The proposition IxP(x) is existential quantification. A witness of IxP(x) is
some x and a witness of P(x).

22 BT

Vx(P(x) — Q(x)) — IxP(x) — IxQ(x)
fn pPQ => fn (a,pa) => (a,pPQ a pa)

mulNat (m
(n

(z

= (m*n,

) (pn
(res : , pres
n
0 => (1,0))
_ => mulNat
(n,pn)
(fact (n-1) (

n Geq 0)
res Geq 0)

Thank you!

	Propositions-as-Types
	Dependent Types

