(iVAR i) =>
(case (Dict.lookup D i)
(SOME(INT v)) => Kk v
| (SOME) =>
panic (TypeError (i,i
NONE =>
panic (UnboundVar 1i))
D:value Dict.dict)
Exp) (k:bool->'a) =

true
false

.
2l
e2
i<v2)))
,ez2)) =>
vall D el
evall D e2
k(vli>v2)))
ND(b1,b2)) =>
evalB D bl (fn vl =>
evalB D b2 (fn v2 =>
k(vl andalso v2)))
(OR(b1,b2)) =>
evalB D bl (fn vl
evalB D b2 (fn v/
k(vl orelse v2)
(NOT(b')) =>
evalB D b' (f

eva
k (D
(ASSIGN
evall |
k (Dict
(THEN(c1, c:
exec D cl
exec D' c2
(IFTHENELSE (b,
evalB D b
(fn true => €
| false => eX
(WHILE(b,c')) =>
evalB D b
(fn true => exec
exec
| false => k D)
(RETURN e) => evall

Continuation Semantics

Fake imperative programming
using CPS, dictionaries, and
datatypes

15-150 M21

Lecture 0806
06 August 2021

Acknowledgements

In this lecture, | use a lot of code and ideas developed by others.
e Red/Black Trees for dictionaries: this semester’s implementation was
adapted from the spring 2020 version, by Mike Erdmann & Frank Pfenning
e Monadic Parser Combinators: core parser code by Matthew McQuaid, for
the course 98-317 (spring 2020)

e Continuation Semantics for while programs: | based my code off of notes
and lectures by Steve Brookes for the course 15-314/812 (spring 2020)

Continuation Semantics

Implement a programming
language in SML

3

.3-.&

Continuation Semantics

W TN -,
v -~ » 4 ¥.
. -

Demonstration:

Syntax for running code

In your terminal shell:

make repl
Standard ML of New Jersey v110...

[New bindings added.]
- FC.Runfile "programs/filename.fc";

- FC.RunfileWith "programs/filename.fc"
[("bvarname", FC.BOOL),
"jvarname", FC.INT 5)];

5 Continuation Semantics

It takes a couple steps to do this.
1 Represent the FC code in a syntax SML can understand
2 Design a mechanism for how to mimic mutable state in SML
3 Write (CPS!) functions which “run” the SML representation of the FC code

The first step is more involved (and sophisticated) than we can get into here, so
we'll mainly focus on the latter two steps.

6 Continuation Semantics

cExp.sml — the SML syntax of FC

FC.sml — the core logic

programs/*.fc — example files (written in FC)

sources.cm

1lib

» parse.sml — code for parsing FC to its SML representation (here be dragons monads)
» DICT.sig & dict.sml — code for dictionaries (0716)

7 Continuation Semantics

Representing FC programs in
SML

The three expression types

We represent FC programs using three S:

e cExp: represents commands. The program as a whole is represented by a
value of type cExp. These are built up from some basic commands via
various operations.

e iEXp: represents integer expressions, which could be a variable name, an
integer constant, or various arithmetic combinations of other integer
expressions.

e bExp: represents boolean expressions, which could be a variable name, a
boolean constant, boolean operations on other boolean expressions, or
comparisons between integer expressions.

8 Representing FC programs in SML

9 Representing FC programs in SML

4 iExp = 1VAR

5 CONST

6 PLUS iExp * iExp
7 TIMES iExp * 1Exp
: NEG 1Exp

9 DIV ikExp * 1Exp

12 bEXp = DbVAR

13 TRUE

14 FALSE

15 EQ lEXp * lEXp
16 L ikExp * 1Exp
17 GT iExp * 1Exp
18 AND bExp * bExp
19 NOT bExp

20 bExp * DbExp

10

Representing FC programs in SML

23 CEXp

24

25

26

27

28

29

30

31

32

SKIP

ABORT

ASSIGNB * bExp
ASSIGNI x 1Exp

THEN cExp * cExp

IFTHENELSE bExp* cExp *cExp
WHILE bExp * cExp

PRINT iExp

ASSERT bExp

RETURN 1Exp

]_]_ Representing FC programs in SML

We've written some code which
Reads the .fc file
Builds a single value of type cExp representing the code
(¥*Accepts a string of FC code and parses it =)
fcParser .parse
->(cExp -> ’a) -> (-> ’a) ->’a
(¥*Accepts a filename and reads FC code in it*)
fcParser.fileParse
->(cExp -> ’a) -> (-> ’a) ->’a
fcParser.showParse : -> cExp

Note: The parser is currently somewhat buggy. |'m working on improving it.
\lote: Parsing is a really interesting topic. Learn more about it if you get the
12 Representing FC programs in SML chance!

v Represent the FC code in a syntax SML can understand
2 Design a mechanism for how to mimic mutable state in SML
3 Write (CPS!) functions which “run” the SML representation of the FC code

13

Representing FC programs in SML

Representing States as
Dictionaries

Recall:

21

22

23

24

25

26

27

28

29

30

31

32

33

DICT =

Key : EQ
’a entry = Key.t * ’a
’a dict
empty : ’a dict
ExistingEntry
insert : ’a entry * ’a dict ->
overwrite ’a entry * ’a dict
lookup : ’a dict -> Key.t -> ’a

Representing States as Dictionaries

’a dict

->

>a dict

13

14

15

16

17

18

19

20

21

22

23

StringOrd : ORD
t =

cmp = String.compare

RBDict (KeyOrd : ORD) :> DICT
Key.t = KeyOrd.t =

cmpEqual (KeyOrd)
Key.t * ’a

Key
’a entry

Dict = RBDict(StringQOrd)

Representing States as Dictionaries

Using dictionaries to mimic mutable state

We want to simulate a "mutable state”, where variables
are set to certain values and can be modified later.

17

Representing States as Dictionaries

Pass a dictionary around

We want to simulate a “mutable state”, where variables are set to certain values
and can be modified later.

e All our functions will take in a dictionary as an argument, representing the
“current state”

e Set a variable x to v : t by putting

D> = Dict.overwrite D ("x",v)

and then using D’ as the state from then on (e.g. passing to other
functions)

e Query the current value of x by putting

xVal = Dict.lookup D "x" I

If xVal is v then x is currently set to v. If xVal is “then x
is currently unbound.

]_9 Representing States as Dictionaries

How we'll keep track of variables

8 var = BO0OOL | INT

Soa var Dict.dict stores booleans and integers, tagged with their types.

e If Dict.lookup D "x"is (BOOL b), then x is set a
boolean-valued variable, whose value is currently b.

e I[f Dict.lookup D "x'"is (INT n), then x is an
integer-valued variable whose current value is n.

20 Representing States as Dictionaries

v Represent the FC code in a syntax SML can understand
v Design a mechanism for how to mimic mutable state in SML
3 Write (CPS!) functions which “run” the SML representation of the FC code

21

Representing States as Dictionaries

5 Minute Break

Execution

A system of errors

12 Type = Bool | Int

13 error =

14 TypeError * Type * Type
15 UnboundVar

16 AssertionError

17 Abort

18 DivZero

19 NoReturn

interpret : cExp
-> (error -> ’a)

-> (-> ’3)
_>)a
REQUIRES: true

ENSURES:

interpret 1nput panic success

evaluates to success (n) if executing the command input returns n. If
executing input encounters an error e, then

interpret 1nput panic success — panic e.

How to interpret

interpret 1nput panic success =

evalB (D:var Dict.dict) (b:DbExp)

(k: -> a) : ’a = ...
evall (D:var Dict.dict) (e:iExp)
(k: -> a) : ’a =

exec (D:var Dict.dict) (c:cExp)
(k:var Dict.dict -> ’a):’a

evall is CPS to the core!

26 evall (D : var Dict.dict)
27 (e : iExp) (k: -> 73) =
28 e

29 (CONST n) => k n

30 | (PLUS(el,e2)) =>

31 evall D el (vi =>

32 evall D e2 (v2 =>

33 k(vi+v2)))

34 | (TIMES(el,e2)) =>

35 evall D el (vi =>

36 evall D e2 (v2 =>

37 k(vixv2)))

evall is CPS to the core!

40 | (NEG(e’)) =>
41 evall D e’ (v => k(~v))
42 | (DIV(el,e2)) =>
43 evall D e2 (O => panic DivZero
44 | v2 => evall D el (vi=>
45 k(Vl div V2)))
46 | (iVAR i) =>
a7 ((Dict.lookup D i)
48 ((INT v)) => k v
49 | (_) =>
50 panic (TypeError (i,Int,Bool))
51 | =>
panic (UnboundVar i))

and so is evalB!

55
56
57
58
59
60
61
62
63
64
65
66

67

28

evalB (D:var Dict.dict)

(b:bExp) (k:
b
TRUE => k
FALSE => Kk
(EQ(el,e2)) =>

evall D el (
evall D e2 (

k(vli=v2)))
(LT(el,e2)) =>

evall D el (
evall D e2 (

k(vi<v2)))

Execution

_>)a)

V2

vl
V2

z| | (OR(b1,b2)) =>
79 evalB D bl (vl =>
80 evalB D b2 (v2 =>
81 k(vi v2)))
82 | (NOT(b’)) =>
83 evalB D b’ (v => k (v))
84 | (bVAR(i)) =>
85 ((Dict.lookup D i)
86 ((BOOL v)) => k v
87 | ((INT _)) =>
88 panic (TypeError (i,Bool,Int))
89 | =>
panic (UnboundVar i))

Hard-coding syntactic sugar in
parser

and finally exec

94 exec (D : var Dict.dict) (c : cExp)
95 (k : var Dict.dict -> ’a) : ’a =
96 C

97 SKIP => k D

98 | ABORT => panic Abort

99 | (ASSIGNB(s,b)) =>

100 evalB D b (vbh =>

101 k (Dict.overwrite((s,BOOL vb),D)))
102 | (ASSIGNI(i,e)) =>

103 evall D e (v =>

104 k (Dict.overwrite((i,INT wv),D)))

and finally exec

107 | (THEN(cl,c2)) =>

108 exec D c1 (D’ =>

109 exec D’ c2 k)

110 | (IFTHENELSE(b,cl1,c2)) =>

111 evalB D b

112 (=> exec D cl1 k
113 | => exec D c2 k)
114 | (WHILE(b,c’)) =>

115 evalB D b

116 (=> exec D ¢’ (D’ =>
117 exec D’ ¢ k)
118 | => k D)

and finally exec

121 | (RETURN e) => evall D e success

122 | (ASSERT b) => evalB D b

123 (=> k D

124 | => panic AssertionError)
125 | (PRINT e) =>

126 evall D e

127 (v => (((Int.toString v) ~"\n'");

128 k D))

How to interpret

interpret 1nput panic success =

evalB (D:var Dict.dict) (b:bExp)

(k: -> ’a) : a = ...
evall (D:var Dict.dict) (e:iExp)
(k: -> ’a) : ’a =

exec (D:var Dict.dict) (c:cExp)
(k:var Dict.dict -> ’a):’a

(x calls success to returnx*)

exec (Dict.empty) input
(_ => panic NoReturn)

interpretWith 1nitDict input panic success

evalB (D:var Dict.dict) (b:bExp)

(k: -> ’a) : ’a = ...
evall (D:var Dict.dict) (e:iExp)
(k: -> ’a) : ’a =

exec (D:var Dict.dict) (c:cExp)
(k:var Dict.dict -> ’a):’a

(x calls success to returnx)

exec 1nitDict 1input
(_ => panic NoReturn)

interpret = 1nterpretWith Dict.empty

e More types than just int and bool
e More constructs, more sugar
e More language features

Thank you!

	Representing FC programs in SML
	Representing States as Dictionaries
	Execution

