
Parallelism & Sequences

15-150 M21

Lecture 0719
19 July 2021



15-150 Principles of Functional Programming

X Basics of Functional Computation

X Induction and Recursion

X Polymorphism & Higher-Order Functions

X Functional Control Flow

X The SML Modules System

• Applications & Connections

Parallelism & Sequences1



0 n-ary Parallelism



Task : Applying a constant-time function to n things

The work of this is always going to be at least O(n). But how good can we do
on the span?

n-ary Parallelism2



What if we could do them all at
the same time?



SEQUENCE

We’ve defined a signature SEQUENCE , containing an abstract type ’a seq

and a variety of operations on seqs.
0719.0 (SEQUENCE.sig)

2 signature SEQUENCE =

3 sig

4

5 type ’a t

6 type ’a seq = ’a t

n-ary Parallelism4



Seq

• We’ve implemented Seq :> SEQUENCE such that the functions meets
the bounds specified in the documentation
0719.1 (Seq.sml)

12 structure Seq :> SEQUENCE =

13 struct

• How’s it implemented? Who cares?!

• By analogy to lists, we’ll write sequences as

〈1, 3, ∼7, 2, 6, 4〉 : int Seq.seq

This is a mathematical notation, not SML syntax.

n-ary Parallelism5



Key Point:
Sequences are parallel data

structures



In the sequence library, we have:

map : (’a -> ’b) -> ’a seq -> ’b seq

which takes a function f and applies it to every element in a sequence S.

But it performs all these applications in parallel: if f has O(1) span, then so
too does map f, i.e. the parallel runtime (assuming arbitrarily-many processors)
of map f S does not grow as the length of S grows.

n-ary Parallelism7



Documentation:
The Sequence Reference



Live Coding:
Basic Sequence Functions



0719.2 (sandbox.sml)

10 fun rev S =

11 let

12 val n = Seq.length S (* O(1) *)

13 in

14 (* O(n) work , O(1) span *)

15 Seq.tabulate (fn i => Seq.nth S (n-i-1)) n

16 end

n-ary Parallelism10



0719.3 (sandbox.sml)

26 fun append(S1 ,S2) =

27 let

28 (* O(1) *)

29 val (m,n) = (Seq.length S1,Seq.length S2)

30

31 (* O(1) *)

32 fun f i = case i<m of

33 true => Seq.nth S1 i

34 | false => Seq.nth S2 (i-m)

35 in

36 (* O(n+m) work , O(1) span *)

37 Seq.tabulate f (m+n)

38 end
n-ary Parallelism11



0719.4 (sandbox.sml)

47 val sum = Seq.reduce op+ 0

n-ary Parallelism12



0719.5 (sandbox.sml)

57 infix |>

58 fun x |> f = f x

59

60 fun mappartial f S =

61 S |> (Seq.map f)

62 |> (Seq.filter Option.isSome)

63 |> (Seq.map Option.valOf)

n-ary Parallelism13



0719.6 (sandbox.sml)

74 fun double S =

75 let

76 fun twoseq x = Seq.append(

77 Seq.singleton x,

78 Seq.singleton x)

79 in

80 Seq.mapreduce

81 twoseq

82 (Seq.empty()) Seq.append

83 S

84 end

n-ary Parallelism14



0719.7 (sandbox.sml)

88 fun double ’ S =

89 Seq.tabulate

90 (fn i => Seq.nth S (i div 2))

91 (2 * Seq.length(S))

n-ary Parallelism15



5-minute break



1 Cost Graphs



Idea

• Goal: establish a way to reason visually about
the asymptotic runtime of algorithms

• Will represent algorithms as directed acyclic
graphs

• Will reason about the runtime properties of the
algorithm as properties of the graph.

f

g h

j

Cost Graphs17



Depicting Sequential Evaluation

f1

f2

f3

f1; f2; f3

Cost Graphs18



Depicting Parallel Evaluation

f1 f2 f3 . . . fn−1 fn

f1 ‖ f2 ‖ f3 ‖ · · · ‖ fn−1 ‖ fn

Cost Graphs19



Key Idea: Can use cost graphs
to determine the work & span of

a function

Work: Sum of total cost in graph
Span: Height of longest path through graph



Demonstration:
Work & Span Analysis using

cost graphs



Summary

• Prove equivalence of two structures ascribing to the same signature by
relating values representing the same structure

• Carefully invariants and dutifully maintain them, using the opacity of the
modules system to prevent the user from breaking them

Cost Graphs22



Next Time

• Start Applications portion of course

• Parallel data structures and algorithms

Cost Graphs23



Thank you!


	n-ary Parallelism
	Cost Graphs

