


Decision Problems



Birth Year of Computation

1936

January
Su Mo Tu We Th Fr Sa
1 2 3
5 & 7T & 9 10

12 13 14 15 16 17
19 20 21 22 23 24
M 27 268 29 30 31
14 80 18 248 300

February
Su Mo Tu We Th Fr Sa

2 3 4 5 6 7
9 10 11 12 13 14
16 17 18 19 20 21 22
23 24 25 26 27 28
70 1540 224 2D

March

[Su Mo Tu we Th Fr Sa
1 2 3 4 5 B

g 9 10 11 12 13
15 16 17 18 19 X0
22 23 24 25 26 X7
30 3
|a.~r::-1mz:.i:n.~n

Decision

Problems

April
Su Mo Tu We Th Fr Sa

L O

12 13 14 1% 16 17
19 20 21 22 23 24
M 27 28 29 30

a6 1453 21@% 28

May
S0 Mo Tu We Th Fr Sa
1
3 4 5 6 7T 8
10 11 12 13 14 1%
17 18 18 20 71 22
24 75 26 z?zal(-

31

60 14232 2008 270

June
[Su Mo Tu we Th Fr Sa
12 3 45
4 9 10 11 12
14 15 16 17 18 18

28 30

| 50 12 198 2600




Warning:



Preliminary: Alphabets

When working with Turing computability, we assume we have some (usually
finite) set ¥ — our

We'll be computing with the set ¥* of all finite strings/sequences/lists of
elements of X ( “strings over X"). For instance,

{a}* = {¢, a, aa, aaa, aaaa, aaaaa, aaaaaa, . . .}

3 Decision Problems



Turing's Notion of Computation

Computation is done by , which take some input (en-
coded as a string over some alphabet ¥) and either accepts it or
| rejects It.

M :¥* —~ {ACCEPT,REJECT)

This is a partial function, because it could loop forever on some

Inputs.
For any Turing machine M, we write

L(M)={s¢€ > M(s) = ACCEPT}
for the of M.

4 Decision Problems



Computability

Question: Are all subsets L C ¥* . is there a Turing Machine M
such that L = £L(M)?
No!
e Y™ is countably-infinite, so P (¥X*) is uncountably infinite. But there are
only countably-many possible Turing Machines
e There are explicit subsets of ~* which are not computable, e.g. HALTS

5 Decision Problems



Typed Functional Decision Problems

We can have a similar idea in functional programming:

M :t ->
M : Sigma ->
where Sigma is the alphabet type (e.g. ).
Question: For which sets L of values of type Sigma is there an SML
function M: Sigma -> such that
[ ={v:Sigma | M(v) = +?

6 Decision Problems



Turing Completeness of SML

For each finite set X (with corresponding SML type Sigma), and each
subset L of X* the following are equivalent:

e there exists a Turing Machine M such that L = £L(M)
e there exists an SML function M : Sigma -> such that

[ ={v:Sigma | M(v) = }

7 Decision Problems



Decidable Equality

A type t is said to be an iIf there is a total function

( =): t x t -> deciding whether elements of that type are
equal or not.

Examples: , , , ,

Non-Examples: , ->

We can specify that a polymorphic type variable must be instantiated to an
equality type by writing it with double tick-marks:

( =) . YIg x 224 =>
Fn.equal : ’’a -> ’’a ->
Fn.notEqual : ’’a -> ’’a ->

8 Decision Problems



Module:


https://github.com/smlhelp/aux-library/blob/main/Language.sml
https://github.com/smlhelp/aux-library/blob/main/Language.sml

33 everything (x:’S ) =

For each type Sigma, we identify each L: Sigma language with the set of
values s: Sigma such that L(v) —

]. 0 Decision Problems




Simple Languages

7 everything : ’5 language
: nothing : ’S language

singleton >? 5 ->

’?S language

]. ]. Decision Problems




Language Combinators

2 Or

13 : ’S language * ’S language -> ’S language
14 And

15 : ’S language * ’5S language -> ’S5S language
16 Not

17 : ’S language -> ’S5 language

18 Xor

]. 2 Decision Problems




Substrings and Superstrings

]. 3 Decision Problems




Write more complex
languages



b-minute break



string versus char list

Take Sigma to be . We have a special way of dealing with
S. .. s
String.explode : ->

String.implode

]. 6 Decision Problems




Regular Expressions



|dea:



More Exactly

We'll define a datatype parametrized by a single equality type variable

’?’S regexp =
such that each value R : t regexp defines a language
LR)={v : t | v “matches with” R}

]_8 Regular Expressions






https://github.com/smlhelp/aux-library/blob/main/Regexp.sml
https://github.com/smlhelp/aux-library/blob/main/Regexp.sml

27 Regexp : REGEXP =

28

29 ’?’S regexp =
30 Zero

31 | One

32 | Const > 2 S

Note: you can't actually require that the parameter of a datatype be an equality
type. SML will treat this the same as 'S regexp = ..., but
the ’ > S reminds us to use this with equality types

20 Regular Expressions




A datatype like any other

34

35

36

37

38

39

40

41

42

21

| Times

| Star

depth
depth
depth
depth

1 +

Regular Expressions

’?S regexp *
’?’S regexp

’?’S regexp

Zero

(Const (_))
(Plus (R1,R2))
Int.max (depth R1,depth R2)
(Times (R1,R2))



Idea: Foreach R : Sigma regexp, define the language £(R) to be the set
of all values of type Sigma which “match” or “are accepted” by R.
We'll do this recursively based on R.

LL : ’’S regexp -> ’’S language

REQUIRES: true

ENSURES: LL (R) is a total function deciding L(R), i.e. LL R s —
forall s € L(R),and LL R s = for all s & L(R).

22 Regular Expressions




The Base Cases

e Const v only matches with [v]

L(Const v)={[v]}

e One only matches with []

L(0ne)={[1}

e Zero does not match with anything

L(Zero)=10

23 Regular Expressions




Binary Recursive Cases

e Plus (R1,R2) matches with any list which matches either R1 or R2
L(Plus (R1,R2)) = L£(R1)U £L(R2)

e Times (R1,R2) matches with any list consisting of an R1 list appended
to an R2 list

L(Times (R1,R2))={v1ev2 | vi € L(R1)and v2 € L(R2)}

24 Regular Expressions




e Star (R) matches with any list consisting of finitely-many R-matching lists
appended together

L(Star (R)) ={v10v,@...0@v, | n€Nand v; € L(R) foreach 1 < i < n}

Note: [] € £L(Star (R)) for all R.

25 Regular Expressions




Next Time:



Thank you!



	Decision Problems
	Regular Expressions

