Exceptions

Sound the alarm

15-150 M21

Lecture 0702
02 July 2021

48 result = Accept

49 Keep

50 Discard

51 Break

53 For (check : ’a -> result)
54 (L : ’a)

55 (combine : ’a -> ’b -> ’b)
56 (base : ’Db)

57 (success

58 (panic

59 (return : ’Db

o
62

63 run ([] : ’a) (k:’b => ’¢c) : ’c =
64 k base

65 | run (x::xs8) k =

66 ((check x)

67 Accept => success X

68 Keep => run xs (k (combine x))
69 Discard => run xs Kk

70 (Break s)=> panic s)

71

72 run L return

Observation: Continuations
allow us to “jump out” of a
context

| =
63 run ([] : ’a) (k:’b => ’c) : ’¢c =
64 k base

65 | run (x::x8) k =

66 ((check x)

67 Accept => success x

68 Keep => run xs (k (combine x))
69 Discard => run xs Kk

70 (Break s)=> panic s)

71

72 run L return

“Jumping out” is common
enough to warrant special
syntax/language features for it

e SML has a built-in type called
e Some constructors of the type include

» Div : » Fail ->
» Bind : » LEmpty
» Match : » Option
e Value of type are just like any other type:

2 3 = Div

3 (Fall) => 1

4 | Bind => 2

5 | _ => 3

Note: This is not how we typically use values of type

Under the hood, we can pretend Is implemented something like
= Div | Bind | Fail | ...

But has a special feature: extensibility. The keyword
declares a new constructor of type

9 myExnl

10 myEan *
13 6 = myExn2 (6,

14 myExnl => 4

15 | (mYEXHQ (n,

SML includes the keyword , which raises an exception.

21 k = myExnl

What is the type of k7 Well, a raised exception has most general type ’ a, so it
takes on whatever type it needs to.

% x () = 3+ (myExnl) = 5
o7 Int.toString(myExn1)

myExnl

28

0702.5 (exn.sml)

w2|fun findPartition A pL pR sc fc =
33 ralise Fail "Unimplemented"

37 Negative

38 h_fact n =

39 Int.compare(n,0)

40 => Negative

a1 | => 1

42 | => n * h_fact(n-1)

43

a4 h_tfact n =

45

46 tfact 0O acc = acc

47 | tfact k acc = tfact (k-1) (k*acc)
48

49 n<o0 Negative tfact n 1

54 Neg

55 h_fact n =

56 Int.compare(n,0)

57 => Negative

58 | => 1

59 | => n * h_fact(n-1)

60

61 h_tfact n =

62

63 tfact 0O acc = acc

64 | tfact k acc = tfact (k-1) (k*acc)
65

66 n<0 Neg (Int.abs n) tfact n 1

Question:

Why don’t we consider expressions which raise different
exceptions to be extensionally equivalent?

If e is some expression with might raise exception ex, then we can “handle” the
raised exception ex as follows

e ex => e’

Note:
e |f e does not raise ex, then the whole expression has the same behavior as e

e If e, when evaluated, raises ex, then the whole expression has the same
behavior as e’

e ¢ and e’ must have the same type
e If e raises an exception besides ex, that exception gets propagated

0702.8 (handling.sml)

s/ fun safediv (m : int, n : int):int option=
4 SOME(m div n) handle Div => NONE

0702.9 (handling.sml)

s/fun safehd (L:’a list):’a option =
SOME(List.hd L) handle Empty => NONE

13 NotD1iv

14 OnlyDivBy2

15 OnlyDivBy3

16 sixdiv (n:) =

17 (n mod 2, n mod 3)

18 (0,0) => n div 6

1o (0,_) => (OnlyDivBy2 (n div 2))
2 (_,0) => (OnlyDivBy3 (n div 3))
21 _ = NotDiv

24

25

26

27

28

29

30

31

32

33

34

35

36

printSixDivData n =
nStr = Int.toString n
(nStr~
(Int.toString(sixdiv n)))

(OnlyDivBy2 d) =>
nstr”
(Int.toString d)
(OnlyDivBy3 d) =>

nstr”
(Int.toString d)
NotDiv =>

nStr”~

Badl

Bad?2
foo 1 = Badl | foo 2 = Bad2 |
(foo 1) Badl => foo 2
| Bad2 =>
versus
(foo 1) Badl => foo 2
Bad2 =>

Demonstration: Evaluation
Traces with Exceptions

CPS treeSearch

41

42

43

44

45

46

47

48

’a tree =
Empty | Node

searchl p Empty sc fc
p X SC X

searchl p L sc (
searchl p R sc fc)

’a tree x ’a x

fc ()

| searchl p (Node(L,x,R)) sc fc

’a tree

Use exception for failure continuation

52

53

54

55

56

57

NotFound
search? p Empty sc = NotFound
search2 p (Node(L,x,R)) sc =
p X SC X
search?2 p L sc
NotFound => search?2 p R sc

Use exceptions for both continuations

61

62

63

64

65

66

67

68

69

search3 (p : ’a ->
Found ’a
look Empty =
| look (Node(L,x,R))
P X
(look L

look T

) T sc =

NotFound

(Found x)

NotFound => look R)

(Found x)

=> 8C X

H-minute break?

Demonstration:
nQueens

Thank you!

	Exn

