Theory of Higher Order
Functions

Higher-Order Totality, Staging,
& Combinators

15-150 M21

Lecture 0623
23 June 2021

List filtration system

0623.0 (more-hofs.sml)
|[fun filter p [1 = []

3 | filter p (x::xs) =
4 1f p(X)
5 then x::filter p xs

else filter p xs

]_ Theory of Higher Order Functions

Example Usage

0623.1 (more-hofs.sml)

olval isEven = fn x => x mod 2 = 0 I

0623.2 (more-hofs.sml)

7|val [] filter isEven []
s|lval [] = filter isEven [3,5,7]
2

w|lval [2,4] = filter isEven [2,3,4]
wlval [] = filter (Fn.const false) ["a","b",K6 "c"]
+lval :"a","b","c" —

filter (Fn.const true) ["a","b","c"]

2 Theory of Higher Order Functions

Mappartiali

mappartiali : (int * ’a -> ’b option) -> ’a list
-> ’b list

REQUIRES: g (i, x) is valuable for i > 0

ENSURES: mappartiali g L evaluates to the list of all those z such
that g(i,x) = SOME (z), where i is the index of x in L.

3 Theory of Higher Order Functions

0623.4 (more-hofs.sml)

ss|fun half (_,x) = if isEven x

39 then SDME(X div 2)

40 else NONE

a|fun convert (i,x) = 1if i<x

22 then SOME(Int.toString x)
43 else NONE

wlval [1,2,3] =

15 mappartiali half [1,2,3,4,5,6,7]

s val ["5","9“] =

mappartiali convert [5,0,1,9,~6,4]

47

4 Theory of Higher Order Functions

mappartiali

Mappartiali

0623.3 (more-hofs.sml)

s|fun mappartiali g [] = []

27 | mappartiali g (x::xs) =

28 let

29 fun g’ (i,x’) = g(i+l,x’)

30 in

31 (case g(0,x) of

32 (SOME y) => y::mappartiali g’ xs
33 | _ => mappartiali g’ xs)

6 Theory of Higher Order Functions

0 Evaluation and Equivalence of
HOFs

HOFs are trivially total
map is total

Proof. For any value £ : t1 -> t2,

map f=— fn [] => [] | x::xs =>
[]
filter is total
Proof. For any valuep : t -> bool,
filter p=— fn [] => [] | x::xs =>
[]

7 Evaluation and Equivalence of HOFs

Higher-Order Totality?

A more interesting claim:

For any types t1,t2 and any total £ : t1 -> t2, map fis
total.
Proof. By structural inductionon L. : t1 list

BC PN

map f [] = []

L=x::xs for some x:t1 and some xs:t1 list
map f xs < vs for some value vs:t2 list

map f (x::xs)

—> (f x)::map f xs (defn map)
— (f x)::vs
—> V::VS (f is total)

8 Evaluation and Equivalence of HOFs

For all types t1, t2 and all total values £ : t1 -> t2,

Y

len o (map f) = len

1 Staging

What's the difference?

square : 1nt -> 1nt
REQUIRES: true
ENSURES: square x = x*x, but it takes a really long time

0623.5 (staging.sml) 0623.6 (staging.sml)
»|fun exl x y = ss|fun ex2 x =
26 let 34 let
27 val xsq = square X | = val Xxsq = square X
28 in 36 in
29 Xsq + ¥y 37 fny => xs8q +y
30 end 38 end

Staging is delibrately structuring a curried function to perform computations
once certain arguments are obtained.
fun foo x =
let
val vl = horribleComputation x
in
(fn y =>
let
val v2 = otherHorribleComp (vl,y)

in
fnz =>2z+ vl + v2
end

2 Runtime Analysis of HOFs

Combine all the elements of a list

foldr : (’a * b -> ’b) -> ’b -> ’a list -> ’b
REQUIRES: g is total

ENSURES:
foldr g acc [x1l,...,xn]l =g(x1l,g(...,g(xn,acc)...))

0623.7 (more-hofs.sml)

|fun foldr g acc [] = acc
56 | foldr g acc (x::xs) = g(x,foldr g acc xs)

57
s|val sum = foldr (op +) O

so|val prod = foldr (op *) 1
strConcat = foldr (op ~) ""

12 Runtime Analysis of HOFs

Origami

https://www.cs.cmu.edu/~15150/resources/handouts/
origami/origami.pdf

https://www.cs.cmu.edu/~15150/resources/handouts/
origami/origami.sml

https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.pdf
https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.pdf
https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.sml
https://www.cs.cmu.edu/~15150/resources/handouts/origami/origami.sml

foldl (op~) "I
—> foldl (op~)
—> foldl (op~)
—> foldl (op~)
—> foldl (op~)
—> foldl (op~)
—> "OLLEH!"

["®H","E","L","L","0"]
"H!" ["E","L","L","0"]
"EH!" ["L","L","0"]
"LEH!" ["L","0"]
"LLEH!" ["0"]

"OLLEH!" []

14 Runtime Analysis of HOFs

strConcat trace

(fn

I, => foldr (OpA) nn L) ["H",”E",”L","L","O"]

———>foldr (OpA) nn I:IIHH,llEll’IILII,IILII’IIOII]

IR

"H"~(foldr (op~) "" ["E","L","L","0"])
"H"~("E"~(foldr (op~) "" ["L","L","0"1))

"H" S (UE" S ("L" " (foldr (op™) "" ["L","0"1)))

HU S (UEM S (ML (ULY S (foldr (opt) "M ["0"1))))
HY S (UE" (ML (MLU ("0 (foldr (opt) "' [1)))))
HY S (PE" (LT (LT (0"))))

"HELLO"

15 Runtime Analysis of HOFs

strConcat Analysis

b-minute break

3 Combinators

Binary Operations

In mathematics and computer science, a binary operation is a function® (often
written infixed) which takes two “things’ of the same “kind" and “combines”
them into another thing of that “kind".
Mathematical Examples:

e + is a binary operation on complex numbers

e U is a binary operation on sets

e X is a binary operation on 3-dimensional vectors
SML examples

e div is a (partial) binary operation on ints

e “Tupling” or “pairing” is a binary operation on expressions: if el and e2

are expressions, (el ,e2) is an expression
e Composition is a binary operation on functions

]. 8 Combinators

Stick two functions together

(op o) : (b -> ’¢c) * (a -> ’b) ->(’a -> ’c)
REQUIRES: true
ENSURES: (g o f) Zhsuchthat h(x) = g(f(x))

0623.8 (combinators.sml)

slffun zip([1,_)=1L[]
s | zip(_,[1)=1L[]

6 | zip(x::xs,y::ys) = (x,y) :: zip(xs,ys)
+lval dotProd = (foldr op+ 0) o (map op*) o zip
s | (% (1x4) + (2x5) + (3*6) *)

olval 32 = dotProd([1,2,3],[4,5,6])

32 = dotProd

Combinators

Addition is a binary operation on ints:
e Associativity:

e |dentity: x + (y +z) = (x+y) +z

Y Y

O +x = x = x + 0
Composition is a binary operation on functions (constrained by types)
e Associativity:
h o (gof) = (hog)of
e |dentity:
Fn.id o f = f = f o Fn.id

The algebraic study of the composition operation is the mathematical discipline
of category theory.

2 O Combinators

0623.9 (combinators.sml)

1a|infix &&& **x*

s |fun £ &&& g = fn x => (f x, g x)

6| fun £ *x*xx g = fn (x,y) => (f x,g y)
i7|fun 1listToString toStr L =

18] |:|| -~
19 (String.concatWith "," (map toStr L)) ~
20 u] n

21|val strAndLen =

22 (listToString Int.toString) &&& List.length

23|val format =

24 (fn (s,1) =>

25 "The list " = s = " has length " ~ (Int.toString 1)
26) o strAndLen

2]. Combinators

Function Application Pipe

0623.10 (combinators.sml)

s3] 1nfix |>
w|fun x |> £ = f x

0623.11 (combinators.sml)

| fun dotProd’ (L1,L2) =

39 (Ll,LQ) (x int list * int list)
20 > zip (x (int * int) list *)
a1 > map Op* (x int list *)
2 > foldr (op+) 0 (* int *)

wlval 32 = dotProd’ ([1,2,3],[4,5,6])

22 Combinators

Verify that this implementation of mappartiali matches our earlier
definition
0623.12 (combinators.sml)

s|fun 1sSome NONE = false

49 | isSome _ = true
solfun valOf NONE = raise 0Option
51 | valOf (SOME x) = x

s>|fun mappartial f L =

s/ L |> map £ |> filter isSome |> map valOf
=« fun mappartiali f L =

55 |> mapi £ [> filter isSome [> map valOf

Combinators

e \We can write more complex versions of familiar HOFs

e With standard HOFs like map or filter, we're often interested in a
higher-order notion of totality

e In some circumstances, we want to be careful about how the computation is
staged in curried functions of several arguments

e We can analyze the runtime of HOFs just like with other functions, but often
must make assumptions about the runtime of the functions given as
arguments

e Functions have their own “algebra” of combinators

24 Combinators

e [ree search and options
e T[ree balancing
e [ree sorting

Thank you!

	Evaluation and Equivalence of HOFs
	Staging
	Runtime Analysis of HOFs
	Combinators

