Higher Order Functions

More abstract abstractions

15-150 M21

Lecture 0621
21 June 2021

Lambda Abstraction

Thinking about functions

(fn x => e)

“e, but | haven't decided what x should be yet”

Given any expression, you can “lambda abstract” any sub-expression by replacing
it with a variable, and then taking that variable in as a function argument. This
will result in a more-general expression, which may be utilized in more

circumstances.

]. Lambda Abstraction

Example: Abstracting 5*7

5x7

int
(fn y => bxy)
int -> 1int

(fn x => (fn y => x*y))
int -> (int -> int)

(fn £ => (fn x => (fn y => £(x,y))))
(’a * ’b -> ’¢c) -> (’a -> (’b -> ’c))

2 Lambda Abstraction

A new way to multiply?

Consider this expression from the following slide:

(fn x=>(fn y=>xx*xy)) : int -> (int -> int)

This expression behaves a lot like (op *) :int * int -> int
0621.0 (currying.sml)

:jval mult = fn x => (fn y => xx*y)

silval 35 = (op *)(5,7)
7lval 35 = mult 5 7
e mult 5 7 is parsed as (mult 5) 7

3 Lambda Abstraction

What's the difference?

(op *) : int * int -> int
mult : 1int -> int -> int

Partial Application

The difference between mult and (op *) isthat mult may be “partially
applied”:
0621.0 (currying.sml)

slval mult = fn x => (fn y => x*y) I

0621.0 (currying.sml)

ov|/val quintuple : int -> int = mult 5

11

s|val quin = (op *) (5,)
14 *)

5 Lambda Abstraction

The function mult is called curried (named after computer scientist Haskell

Curry). Curried functions take their arguments ‘one at a time' and may therefore
be partially applied.
Uncurried:

val foo

int * string * bool -> 1int list option
= fn (x,s,b)

Curried:

val foo'’

int -> string -> bool -> 1int list option
= fn x => fn s => fn b => e

6 Lambda Abstraction

Mr. Curry and Mr. Uncurry

After the lecture, check out this awesome reference by Mia (one of our TAs):
tinyurl.com /150-hofs-note

7 Lambda Abstraction

https://tinyurl.com/150-hofs-note

Some notes about syntax

e Type arrows right associate:
tl -> t2 -> t3 -> t4 -> tb
Is parsed as

t1 -> (t2 -> (£3 -> (t4 -> t5)))

e Function application left associates:
f x1 x2 x3 x4

Is parsed as
(CC(f x1) x2) x3) x4)

8 Lambda Abstraction

Some notes about syntax

SML has syntactic sugar for declaring curried functions with fun:
0621.1 (currying.sml)

w|fun switch (x:int) (y:int) (b:bool) : int
20 = 1f b then y else x

21

»|val defaultToZero : int -> bool -> int

28 = switch O

» val pickBinary : bool -> int

25 = defaultToZero 1

w|val O = pickBinary false

This will be helpful for declaring recursive curried functions.

9 Lambda Abstraction

Permute

github.com/smlhelp/aux-library/blob/main/Permute.sml
github.com/smlhelp/aux-library/blob/main/documentation/permute.

https://github.com/smlhelp/aux-library/blob/main/Permute.sml
https://github.com/smlhelp/aux-library/blob/main/documentation/permute.pdf

Recall: ’a ord

aux-library /Permute.sml

+|(x INVARIANT: cmp : ’a ord must be a comparison
function *)
: type ’a ord = ’a *x ’a -> order

].]. Lambda Abstraction

12

Recall: Monomorphic & Polymorphic uncurried msort

(* msort

fun msort
| msort
| msort

(*x msort
fun msort
| msort

int list -> int list *)

let val (A,B)
in merge (msort A, msort B)

split L

ord *

(cmp, [])
(cmp, [x])

’a list a list *)

| msort (cmp,L)

merge (cmp ,msort (cmp ,A), msort(cmp,B))

let val (A,B) split L in

Lambda Abstraction

Curried polymorphic merge

merge : ’a ord -> (’a list * ’a list) -> ’a list
REQUIRES: L1 and L2 are sorted with respect to cmp

ENSURES: merge cmp (L1,L2) evaluates to a cmp-sorted permutation
of L1QL2

aux-library /Permute.sml

+| fun merge cmp (L1 : ’a list, []) = L1
7 | merge cmp ([], L2 : ’a list):’a list = L2
73 | merge (cmp : ’a ord) (x::xs, y::ys) =
72 (case cmp(x,y) of
75 GREATER => y::merge cmp (Xx::xs,ys)
| _ => x::merge cmp (Xs,y::ys))

13 Lambda Abstraction

Polymorphic msort
aux-library /Permute.sml|

7| fun msort (cmp : ’a ord) [] = []

8 | msort cmp ([x] : ’a list) = [x]

79 | msort cmp L =

80 let

51 val (A,B) = split L

82 in

83 merge cmp (msort cmp A, msort cmp B)
84 end

aux-library /Permute.sml|

fun msort (cmp : ’a ord) [] = []

14 Lambda Abstraction

Example: Alphabetization

Works for strings!
0621.2 (sorts.sml)

s\val alphabetize
5 : string list -> string 1list
6 = Permute.msort String.compare

].5 Lambda Abstraction

Example: Pair order

0621.3 (sorts.sml)
o/ fun cmpPair ((a,b),(c,d)) =

1| case Int.compare(a,c) of
2 EQUAL => Int.compare(b,d)
13 | zZ => Z

14
s|val pairSort

16 : (int=*int) 1list -> (int*int) 1list
17 = Permute.msort cmpPair

16 Lambda Abstraction

Example: Order lists by length

0621.4 (sorts.sml)

22

23

oo/ fun cmpLen (L1 :’a 1list,L2:’a list) =

Int.compare(len L1,len L2)

«|(* val lenSort = msort cmpLen *)

»|val lenSort : ’a list list -> ’a 1list 1list

26

Note: it's possible for cmpLen (L1 ,L2) = EQUAL even though L1 <> L2.

= fn L => Permute.msort cmplLen L

This is where it becomes relevant that mergesort is stable!

17

Lambda Abstraction

Write very-general curried functions, and supply them with some of their
arguments in order to achieve what we want

fun superUseful a b c d e f g =

val taskl = superUseful 3 false (fn x=>4+x) []
val task2 = superUseful 5 true
val task3 = superUseful 0 true fact [] "" 7

18 Lambda Abstraction

Can explicitly codify common patterns
Fewer functions to write

Fewer functions to prove correct
Fewer functions to analyze

Can swap out the implementation of the general function with a
provably-equivalent but more efficient implementation. Then everything is
updated to the new version.

19 Lambda Abstraction

b-minute break

Higher-Order Functions

Higher Order Function:

Any function which takes a function as an argument or returns a function. (has
multiple =>'s in its type)

In the past section, we codified a particular kind of behavior (sorting a list with
respect to some comparison function), and defined a higher-order function which
abstractly codifies that process. We'll now do the same with the following kinds

of behaviors.
e Applying one function to an argument, and then applying a function to the

result
e Applying a function to every element of a list
e lterating through a list and accumulating a result
e Removing certain elements from a list

22

Higher-Order Functions

Module: Fn

(SMLNJ basis)

Stick two functions together

(op o) : (b -> ’¢c)*(’a -> ’b) -> ’a -> ’c
REQUIRES: true
ENSURES: (g o f) = h such that h(x) = g(£f(x)) for all

suitably-typed x

10

11

0621.5 (hofs.sml)

infix o
fun (g o f) x = g(£f(x))
(¥ OR: fun (g o f) = fn x => g(f(x)) *)

val addThree = (fn x => x+3)
val addSix = addThree o addTree

24 Higher-Order Functions

Module: List

(SMLNJ basis)

Apply a function to every element of a list

map : (’a -> ’b) -> ’a list -> ’b list

REQUIRES: £ is total

ENSURES: map f L evaluates to the list L’ consisting of £ applied to each
of the elements of L

21

22

23

24

25

26 Higher-Order Functions

0621.6 (hofs.sml)

fun map f [] = []
| map f (x::xs) = (f x)::map f xs

val [2,3,4] = map (fn x=>x+1) [1,2,3]
val curries =

map (fn name => name ~ " Curry')
["Haskell","Steph","Tim","Denzel"]

let val £ = (fn x => if x mod 2 = 0 then SOME(x div
2) else NONE)
map f [4,5,6,7]
— (f 4):: map f [5,6,7]
—> (SOME 2)::map f [5,6,7]
—> (SOME 2)::(f 5)::map f [6,7]
—> (SOME 2) ::(NONE) ::map f [6,7]
—> (SOME 2) ::(NONE) ::(f 6)::map f [7]
—> (SOME 2) ::(NONE) ::(SOME 3)::map f [7]
—> (SOME 2) ::(NONE) ::(SOME 3)::(f 7) :: map f []
—> (SOME 2) ::(NONE) ::(SOME 3)::(NONE):: map f []
—> (SOME 2) ::(NONE) :: (SOME 3) ::(NONE) :: []

27 Higher-Order Functions

Step through a list and combine

foldl : (’a * b -> ’b) -> ’b -> ’a list -> ’D
REQUIRES: g is total

ENSURES: foldl g acc [x_1,...,x_n]
g(x_n,g(...,g(xl,acc)...))

12

0621.7 (hofs.sml)

s|fun foldl g acc [] = acc
36 | foldl g acc (x::xs) = foldl g (g(x,acc)) xs

37
w/val sum = foldl (op +) O
w/val prod = foldl (op *) 1

al rev = fn L => foldl (op::)
28 Higher-Order Functions

[] L

29

foldl (op~

—> foldl
—> foldl
—> foldl
— foldl
—> foldl

) e
(op ™)
(op ™)
(op ™)
(op ™)
(op ™)

— "OLLEH!"

Higher-Order Functions

["H","E","L","L","0"]
"H!" ["E","L","L","0"]
"EH!" ["L","L","0"]
"LEH!" ["L","0"]
"LLEH!" ["0"]

"OLLEH!" []

Step through a list the other way and combine

foldr : (’a * b -> ’b) -> ’b -> ’a list -> ’D
REQUIRES: g is total

ENSURES: foldr g acc [x_1,...,x_n]
g(x_1,g(...,g(xn,acc)...))

12

48

49

50

51

52

30 Higher-Order Functions

0621.8 (hofs.sml)

fun foldr g acc [] = acc
| foldr g acc (x::xs) = g(x,foldr g acc xs)

val sum = foldr (op +) O
val prod = foldr (op *) 1
al concat = foldr -)

foldr (Op") non [”H","E","L","L","D"]

AR

31

"H'~(foldr (op~) "!" ["E","L","L","0"])
"H'S("E"T(foldr (op) "IN [MLY,'L","0"1))
"HUS(UES (LY (fFoldr (opt) MM [MLY,10"1)))
CHOS(UETS (LTS (foldr (op) U1 [1071))))
CHOS (RN (0 T (Foldr (op”) M1 [1)))))
THOS R (UL (L (0))))

"HELLO ! "

Higher-Order Functions

e Currying allows us to write functions which can be partially applied

e We can abstract common patterns of reasoning into curried HOFs, which
can then be partially applied to get functions with more specific behavior

» Polymorphic sorting
Composition
Mapping

Folding

>
>
>
» Filtering

32 Higher-Order Functions

e Totality and Extensional Equivalence of HOFs
e Staging
e Combinators

33 Higher-Order Functions

Thank you!

	Lambda Abstraction
	Higher-Order Functions

