
Higher Order Functions

More abstract abstractions

15-150 M21

Lecture 0621
21 June 2021

0 Lambda Abstraction

Thinking about functions

(fn x => e)

“e, but I haven’t decided what x should be yet”

Given any expression, you can “lambda abstract” any sub-expression by replacing
it with a variable, and then taking that variable in as a function argument. This
will result in a more-general expression, which may be utilized in more
circumstances.

Lambda Abstraction1

Example: Abstracting 5*7

5*7

: int

(fn y => 5*y)

: int -> int

(fn x => (fn y => x*y))

: int -> (int -> int)

(fn f => (fn x => (fn y => f(x,y))))

: (’a * ’b -> ’c) -> (’a -> (’b -> ’c))

Lambda Abstraction2

A new way to multiply?

Consider this expression from the following slide:

(fn x=>(fn y=>x*y)) : int -> (int -> int)

This expression behaves a lot like (op *):int * int -> int

0621.0 (currying.sml)

4 val mult = fn x => (fn y => x*y)

5

6 val 35 = (op *)(5,7)

7 val 35 = mult 5 7

8 (* mult 5 7 is parsed as (mult 5) 7 *)

Lambda Abstraction3

What’s the difference?
(op *) : int * int -> int

mult : int -> int -> int

Partial Application

The difference between mult and (op *) is that mult may be “partially
applied”:
0621.0 (currying.sml)

4 val mult = fn x => (fn y => x*y)

0621.0 (currying.sml)

10 val quintuple : int -> int = mult 5

11

12 (* SYNTAX ERROR:

13 val quin = (op *)(5,)

14 *)

Lambda Abstraction5

Currying

The function mult is called curried (named after computer scientist Haskell
Curry). Curried functions take their arguments ‘one at a time’ and may therefore
be partially applied.
Uncurried:
val foo

: int * string * bool -> int list option

= fn (x,s,b) => e

Curried:
val foo ’

: int -> string -> bool -> int list option

= fn x => fn s => fn b => e

Lambda Abstraction6

Mr. Curry and Mr. Uncurry

After the lecture, check out this awesome reference by Mia (one of our TAs):
tinyurl.com/150-hofs-note

Lambda Abstraction7

https://tinyurl.com/150-hofs-note

Some notes about syntax

• Type arrows right associate:

t1 -> t2 -> t3 -> t4 -> t5

is parsed as

t1 -> (t2 -> (t3 -> (t4 -> t5)))

• Function application left associates:

f x1 x2 x3 x4

is parsed as
((((f x1) x2) x3) x4)

Lambda Abstraction8

Some notes about syntax

SML has syntactic sugar for declaring curried functions with fun:
0621.1 (currying.sml)

19 fun switch (x:int) (y:int) (b:bool) : int

20 = if b then y else x

21

22 val defaultToZero : int -> bool -> int

23 = switch 0

24 val pickBinary : bool -> int

25 = defaultToZero 1

26 val 0 = pickBinary false

This will be helpful for declaring recursive curried functions.

Lambda Abstraction9

Module: Permute
github.com/smlhelp/aux-library/blob/main/Permute.sml

github.com/smlhelp/aux-library/blob/main/documentation/permute.pdf

https://github.com/smlhelp/aux-library/blob/main/Permute.sml
https://github.com/smlhelp/aux-library/blob/main/documentation/permute.pdf

Recall: ’a ord

aux-library/Permute.sml

7 (* INVARIANT: cmp : ’a ord must be a comparison

function *)

8 type ’a ord = ’a * ’a -> order

Lambda Abstraction11

Recall: Monomorphic & Polymorphic uncurried msort

(* msort : int list -> int list *)

fun msort [] = []

| msort [x] = [x]

| msort L = let val (A,B) = split L

in merge(msort A, msort B)

end

(* msort : ’a ord * ’a list -> ’a list *)

fun msort (cmp ,[]) = []

| msort (cmp ,[x]) = [x]

| msort (cmp ,L) = let val (A,B) = split L in

merge(cmp ,msort(cmp ,A), msort(cmp ,B))

end

Lambda Abstraction12

Curried polymorphic merge

merge : ’a ord -> (’a list * ’a list) -> ’a list

REQUIRES: L1 and L2 are sorted with respect to cmp

ENSURES: merge cmp (L1 ,L2) evaluates to a cmp-sorted permutation
of L1@L2

aux-library/Permute.sml

71 fun merge cmp (L1 : ’a list , []) = L1

72 | merge cmp ([], L2 : ’a list):’a list = L2

73 | merge (cmp : ’a ord) (x::xs , y::ys) =

74 (case cmp(x,y) of

75 GREATER => y:: merge cmp (x::xs,ys)

76 | _ => x::merge cmp (xs ,y::ys))

Lambda Abstraction13

Polymorphic msort

aux-library/Permute.sml

77 fun msort (cmp : ’a ord) [] = []

78 | msort cmp ([x] : ’a list) = [x]

79 | msort cmp L =

80 let

81 val (A,B) = split L

82 in

83 merge cmp (msort cmp A, msort cmp B)

84 end

aux-library/Permute.sml

86 fun msort (cmp : ’a ord) [] = []

87 | msort cmp ([x] : ’a list) = [x]

88 | msort cmp L =

89 let

90 val (A,B) = split L

91 val sort = msort cmp

92 in

93 merge cmp (sort A, sort B)

94 end

Lambda Abstraction14

Example: Alphabetization

Works for strings!
0621.2 (sorts.sml)

4 val alphabetize

5 : string list -> string list

6 = Permute.msort String.compare

Lambda Abstraction15

Example: Pair order

0621.3 (sorts.sml)

10 fun cmpPair ((a,b) ,(c,d)) =

11 case Int.compare(a,c) of

12 EQUAL => Int.compare(b,d)

13 | z => z

14

15 val pairSort

16 : (int*int) list -> (int*int) list

17 = Permute.msort cmpPair

Lambda Abstraction16

Example: Order lists by length

0621.4 (sorts.sml)

21 fun cmpLen (L1 :’a list ,L2:’a list) =

22 Int.compare(len L1,len L2)

23

24 (* val lenSort = msort cmpLen *)

25 val lenSort : ’a list list -> ’a list list

26 = fn L => Permute.msort cmpLen L

Note: it’s possible for cmpLen(L1,L2) ∼= EQUAL even though L1 <> L2.
This is where it becomes relevant that mergesort is stable!

Lambda Abstraction17

Game Plan

Write very-general curried functions, and supply them with some of their
arguments in order to achieve what we want

fun superUseful a b c d e f g = ...

val task1 = superUseful 3 false (fn x=>4+x) []

val task2 = superUseful 5 true

val task3 = superUseful 0 true fact [] "" 7

Lambda Abstraction18

Why?

• Can explicitly codify common patterns

• Fewer functions to write

• Fewer functions to prove correct

• Fewer functions to analyze

• Can swap out the implementation of the general function with a
provably-equivalent but more efficient implementation. Then everything is
updated to the new version.

Lambda Abstraction19

5-minute break

1 Higher-Order Functions

Higher Order Function:
Any function which takes a function as an argument or returns a function. (has

multiple ->’s in its type)

The idea

In the past section, we codified a particular kind of behavior (sorting a list with
respect to some comparison function), and defined a higher-order function which
abstractly codifies that process. We’ll now do the same with the following kinds
of behaviors.

• Applying one function to an argument, and then applying a function to the
result

• Applying a function to every element of a list

• Iterating through a list and accumulating a result

• Removing certain elements from a list

Higher-Order Functions22

Module: Fn
(SMLNJ basis)

Stick two functions together

(op o) : (’b -> ’c)*(’a -> ’b) -> ’a -> ’c

REQUIRES: true
ENSURES: (g o f) ∼= h such that h(x) ∼= g(f(x)) for all
suitably-typed x

0621.5 (hofs.sml)

7 infix o

8 fun (g o f) x = g(f(x))

9 (* OR: fun (g o f) = fn x => g(f(x)) *)

10

11 val addThree = (fn x => x+3)

12 val addSix = addThree o addTree

Higher-Order Functions24

Module: List
(SMLNJ basis)

Apply a function to every element of a list

map : (’a -> ’b) -> ’a list -> ’b list

REQUIRES: f is total
ENSURES: map f L evaluates to the list L’ consisting of f applied to each
of the elements of L

0621.6 (hofs.sml)

21 fun map f [] = []

22 | map f (x::xs) = (f x)::map f xs

23

24 val [2,3,4] = map (fn x=>x+1) [1,2,3]

25 val curries =

26 map (fn name => name ^ " Curry")

27 ["Haskell","Steph","Tim","Denzel"]
Higher-Order Functions26

Let val f = (fn x => if x mod 2 = 0 then SOME(x div

2) else NONE)

map f [4,5,6,7]

=⇒ (f 4):: map f [5,6,7]

=⇒ (SOME 2)::map f [5,6,7]

=⇒ (SOME 2)::(f 5)::map f [6,7]

=⇒ (SOME 2)::(NONE)::map f [6,7]

=⇒ (SOME 2)::(NONE)::(f 6)::map f [7]

=⇒ (SOME 2)::(NONE)::(SOME 3)::map f [7]

=⇒ (SOME 2)::(NONE)::(SOME 3)::(f 7) :: map f []

=⇒ (SOME 2)::(NONE)::(SOME 3)::(NONE):: map f []

=⇒ (SOME 2)::(NONE)::(SOME 3)::(NONE)::[]

= [SOME 2,NONE ,SOME 3,NONE]
Higher-Order Functions27

Step through a list and combine

foldl : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

REQUIRES: g is total
ENSURES: foldl g acc [x_1 ,...,x_n] ∼=
g(x_n ,g(...,g(x1,acc)...))

0621.7 (hofs.sml)

35 fun foldl g acc [] = acc

36 | foldl g acc (x::xs) = foldl g (g(x,acc)) xs

37

38 val sum = foldl (op +) 0

39 val prod = foldl (op *) 1

40 val rev = fn L => foldl (op::) [] L
Higher-Order Functions28

foldl (op^) "!" ["H","E","L","L","O"]

=⇒ foldl (op^) "H!" ["E","L","L","O"]

=⇒ foldl (op^) "EH!" ["L","L","O"]

=⇒ foldl (op^) "LEH!" ["L","O"]

=⇒ foldl (op^) "LLEH!" ["O"]

=⇒ foldl (op^) "OLLEH!" []

=⇒ "OLLEH!"

Higher-Order Functions29

Step through a list the other way and combine

foldr : (’a * ’b -> ’b) -> ’b -> ’a list -> ’b

REQUIRES: g is total
ENSURES: foldr g acc [x_1 ,...,x_n] ∼=
g(x_1 ,g(...,g(xn,acc)...))

0621.8 (hofs.sml)

48 fun foldr g acc [] = acc

49 | foldr g acc (x::xs) = g(x,foldr g acc xs)

50

51 val sum = foldr (op +) 0

52 val prod = foldr (op *) 1

53 val concat = foldr (op ^) ""
Higher-Order Functions30

foldr (op^) "!" ["H","E","L","L","O"]

=⇒ "H"^(foldr (op^) "!" ["E","L","L","O"])

=⇒ "H"^("E"^(foldr (op^) "!" ["L","L","O"]))

=⇒ "H"^("E"^("L"^(foldr (op^) "!" ["L","O"])))

=⇒ "H"^("E"^("L"^("L"^(foldr (op^) "!" ["O"]))))

=⇒ "H"^("E"^("L"^("L"^("O"^(foldr (op^) "!" [])))))

=⇒ "H"^("E"^("L"^("L"^("O"^"!"))))

=⇒ "HELLO!"

Higher-Order Functions31

Summary

• Currying allows us to write functions which can be partially applied
• We can abstract common patterns of reasoning into curried HOFs, which

can then be partially applied to get functions with more specific behavior
I Polymorphic sorting
I Composition
I Mapping
I Folding
I Filtering

Higher-Order Functions32

Next Time

• Totality and Extensional Equivalence of HOFs

• Staging

• Combinators

Higher-Order Functions33

Thank you!

	Lambda Abstraction
	Higher-Order Functions

