Parallelism & Trees

15-150 M21

Lecture 0611
11 June 2021




0 Sorting, continued



Giving high-level
algorithm descriptions



The Merge Sort Algorithm

We'll be focusing on merge sort, which consists of the following three steps:
1 Split the input list in half

2 Sort each half
3 merge the sorted halves together to obtain a sorted whole

2 Sorting, continued



split : 1int list -> 1int list * int 1list

REQUIRES: true

ENSURES: split L evaluatesto (A,B) where A and B differ in length by
at most one, and A@B is a permutation of L

merge : 1nt list * 1int list -> 1int 1list
REQUIRES: A and B are sorted
ENSURES: merge (A, B) evaluates to a sorted permutation of A@B

msort : 1nt list -> 1int list

REQUIRES: true
ENSURES: msort (L) evaluates to a sorted permutation of L

3 Sorting, continued



split : int list -> int 1list * 1int 1list

REQUIRES: true

ENSURES: split L evaluatesto (A,B) where A and B differ in length by
at most one, and A@B is a permutation of L

0611.0 (sorting.sml)

i|fun split ([]):int 1list * int list = ([],[])

2 | split ([x] : int 1list) = ([x],[])
3 | split (x::x’::xs8) =
4 let

5 val (A,B) = split xs




merge : 1int list * int 1list -> 1int 1list
REQUIRES: A and B are sorted
ENSURES: merge (A, B) evaluates to a sorted permutation of A@B

0611.1 (sorting.sml)

|/ fun merge (L1:int list,[]:int list) = L1
2 | merge ([],L2) = L2

3 | merge (x::xs,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y::merge(x::xXs,ys)

6 | _ => x::merge(xs,y::ys))

5 Sorting, continued



msort : 1nt list -> 1int 1list

REQUIRES: true
ENSURES: msort (L) evaluates to a sorted permutation of L

0611.2 (sorting.sml)

fun msort ([]:int 1list):int 1list = []
| msort [x] = [x]
| msort L =

et
val (A,B) = split L
in
merge (msort A,msort B)
end

Sorting, continued



1t
spli



merge



msort



1 Parallelism



Opportunity for parallelism

merge (msort A, msort B) I

e Since this is functional code, there's no dependency between the evaluation
of msort A and the evaluation of msort B

e An intelligent scheduler (with access to enough processors) could assign
these evaluation processes to different processors, and have them calculated
at the same time

e This is known as an “opportunity for parallelism”

10 ° Pparallelism




val x = el

val (x,y) = (el,e2) I (x DOES depend on x *)

Opportunity for Parallelism val y = e2
val x = el NOT an opportunity
val x = case el of
(xdoesn’t depend on x pl => @2
|

NOT an opportunity

Opportunity for Parallelism b:ii_EL:i_EE_:fi___________J

NOT an opportunity

]- ]- Parallelism




Work and Span

12

The work (sequential runtime) of a function is the number steps it will take
to evaluate, when we do not take advantage of any parallelism

The span (parallel runtime) of a function is the number of steps it will take
to evaluate, when we take advantage of all opportunities for parallelism (we
assume we have enough processors to do so)

We will express both as a big-O complexity class, representing how the
runtime grows as the input size grows

We will obtain both by analyzing the code, obtaining recurrences, and solving
those recurrences (using the tree method) to obtain the big-O complexity

Parallelism




Calculating Work and Span

val x = (el, e2)
Wx = We1‘|‘We2

Sx = max (5917 5e2)

If we assume that el and e2 take approximately the same amount of time to
evaluate, then

WX:2We1 SX:Sel :592

13 ° Pparallelism




split doesn't have any parallelism

0611.0 (sorting.sml)

ifun split ([]):int 1list * int 1list = ([],[])
2 | split ([x] : int 1list) = ([x],[])

3 | split (x::x’::xs) =

4 et

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end

].4 Parallelism 0 C . D)




merge doesn't either

0611.1 (sorting.sml)

| fun merge (L1:int list,[]:int list) = L1
2 | merge ([],L2) = L2

3 | merge (x::xs,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y::merge(x::xs,ys)

6 | _ => x::merge(xs,y::ys))

Smerge(o) = ko
Smerge(n) < k1 + 5merge(” — 1)

15 Parallelism




But msort does

0611.2 (sorting.sml)

i/fun msort ([]:int 1list) :int list = []
2 | msort [x] = [x]

3 | msort L =

4 let

: val (A,B) = split L

6 in

7 merge (msort A,msort B)

8 end

1 Recurrence:

/| — k].
16 Parallelism Y 1A/ (/9 | Lan



Conclusions

e Work of msort was O(nlog n)

e Making recursive calls to msort in parallel decreased runtime to O(n) —
the span

e Unable to take further advantage of parallelism, because split and
merge only made one recursive call

e This is a shortcoming of 11ists themselves: they're an inherently sequential
data structure and are thus limited in how much parallelism can be utilized

]. 7 Parallelism




b-minute break



2 Trees in SML



Binary trees in SML

e We define a new type tree with the following syntax (which we'll discuss
more Monday):

0611.3 (treeDefn.sml)

i|datatype tree =
Empty | Node of tree * int * tree

e This declares a new type called tree whose constructors are Empty and
Node. Empty is a constant constructor because it's just a value of type
tree. Node takes in an argument of type tree*int*tree and
produces another tree.

e All trees are either of the form Empty or Node (L ,x,R) for some
x : int (referred to as the root of the tree), some L : tree (referred

tree (referred to as the right




Arboretum



0611.9 (arboretum.sml)

rival TO = Empty I




1

T
E E

0611.10 (arboretum.sml)

1\val T1 = Node (Empty,1,Empty) I



0611.11 (arboretum.sml)

r\val T2 = Node (Empty,1,Node (Empty,2,Empty)) I




E 2
-
-
e
-

0611.12 (arboretum.sml)

rlval T3 = Node (Empty,1,Node (Empty,2,Node (Empty
,3,Node (Empty ,4,Node (Empty ,5, Empty)))))

24 ' Treesin SML




0611.13 (arboretum.sml)

1\val T4 = Node(Node (Empty,2,Empty) ,1,Node (Empty
,3,Empty))




5 3
EAE 4/\E
EAE

0611.14 (arboretum.sml)

1\val T5 = Node(Node (Empty,2,Empty) ,1,Node(Node (
Empty ,4,Empty) ,3,Empty))

26 Trees in SML




2 4
A /\
E E 3 E

5/\E
EAE

0611.15 (arboretum.sml)
r\val T6 = Node(Node (Empty,2,Empty) ,1,Node (Node (
Node (Empty ,5, Empty) ,3,Empty) ,4,Empty))




E 2
/\
3 E
Ty
EAE

0611.16 (arboretum.sml)
i\val T7 = Node (Empty,1,Node(Node (Empty ,3,Node (
Empty ,4,Empty)) ,2,Empty))

28 Trees in SML




2 3
/\ /\
4 5 6 7
///A\\\ ///\\\\ //A\\ //A\\
8 9 10 11 E 13 14 E
RN RN RN RN RN RN
F E E E E E E E E E E E

0611.17 (arboretum.sml

1\val T8 = Node(Node(Node(Node (Empty ,8,Empty) ,4,
Node (Empty ,9, Empty)) ,2,Node (Node (Empty , 10,
Empty) ,5,Node (Empty ,11,Empty))) ,1,Node (Node (
Empty ,6,Node (Empty ,13, Empty)) ,3,Node (Node (
Empty ,14,Empty) ,7,Empty)))

29 Trees in SML



Basic Quantities

Height (or depth):

0611.4 trees smI

i fun height (Empty:tree):int = 0
> | height (Node(L,_,R)) =
1 + Int.max(height L,height R)

Size

0611.5 (trees.sml)

i fun size (Empty:tree):int = 0
2 | size (Node(L,_,R)) =

1 + size L + size R

3 Trees in SML




Traversal



0611.6 (trees.sml)

./ fun inord (Empty:tree):int list = []
) | inord (Node(L,x,R)) =
3 (inord L) @ (x::inord R)

0611.7 (trees.sml)

i/ fun preord (Empty:tree):int list = []
2 | preord (Node(L,x,R)) =
x::((preord L) @ (preord R))




Minimum



min : tree *x 1nt —-> 1nt
REQUIRES: true

ENSURES: min (T,default) evaluates to the smallest value in T, or
default if T is empty

34 " Tieesin SML




0611.8 (trees.sml)

i fun min (Empty:tree, default:int) = default
> | min (Node(L,x,R),default) =
3 Int . min(min(L,x) ,min(R,x))

s fun min’ Empty = NONE

6 | min’ (Node(L,x,R)) =

7 (case (min’ L, min’ R) of

8 (NONE ,NONE) => SOME x

5 (NONE , SOME z) => SOME(Int.min(x,z))
10 (SOME y, NONE) => SOME(Int.min(x,y))
’ (SOME y, SOME z) =>

SOME (Int .min(x,Int.min(y,z))))



Work /Span Analysis of Tree Functions

When analyzing tree function, we have two standard notions of size:
e Depth/height, d
e Size (number of nodes), n

To simplify our analysis, we often assume the tree in question is balanced. A
tree Node (L, x,R) is balanced iff

e L and R have approximately the same number of nodes
e Both L and R are balanced
A balanced tree of depth d will have approximately 29 nodes

36 Trees in SML




min runtime
analysis



Depth-Analysis of min

0 Notion of size: depth d of the input tree
1 Recurrences:

2-4 ...
5 Wain(d) is 0(29), Spin(d) is O(d)
If the input tree is balanced, then 29 ~ n, where n is the size (number of nodes)

38 Trees in SML



preord runtime
analysis



Size-Analysis of preord

0 Notion of size: number of nodes n of the input
1 Recurrences:

Wpreord(o) = ko
Wpreord(n) = 2V|/preord(n/2) + kn
NOTE: This assumes the tree is balanced

Spreord(o) — kO
Spreord(n) < Spreord(”/2) + kn

2-4 ...
5 Wpreord(n) is O(nlogn), Spreora(n) is O(n)

40 ° Treesin SML




e We can implement and analyze sorting algorithms using the tools we've
developed so far

e We can identify opportunities for parallelism and analyze how fast the code
would run if a scheduler could take advantage of all such opportunities.

e We can encode binary int trees in SML, write functions operating on them,
and analyze their parallel & sequential runtimes

e T[rees typically have more opportunities for parallelism than lists



Tree Search
Structural Induction on Trees
Custom Datatypes

Parametrized Polymorphism



Thank you!



	Sorting, continued
	Parallelism
	Trees in SML

