
Parallelism & Trees

15-150 M21

Lecture 0611
11 June 2021

0 Sorting, continued

Key Skill: Giving high-level
algorithm descriptions

The Merge Sort Algorithm

We’ll be focusing on merge sort, which consists of the following three steps:

1 Split the input list in half

2 Sort each half

3 merge the sorted halves together to obtain a sorted whole

Sorting, continued2

Specs

split : int list -> int list * int list

REQUIRES: true
ENSURES: split L evaluates to (A,B) where A and B differ in length by
at most one, and A@B is a permutation of L

merge : int list * int list -> int list

REQUIRES: A and B are sorted
ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

msort : int list -> int list

REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L

Sorting, continued3

split : int list -> int list * int list

REQUIRES: true
ENSURES: split L evaluates to (A,B) where A and B differ in length by
at most one, and A@B is a permutation of L

0611.0 (sorting.sml)

1 fun split ([]):int list * int list = ([] ,[])

2 | split ([x] : int list) = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end
Sorting, continued4

merge : int list * int list -> int list

REQUIRES: A and B are sorted
ENSURES: merge(A,B) evaluates to a sorted permutation of A@B

0611.1 (sorting.sml)

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs,ys)

6 | _ => x::merge(xs,y::ys))

Sorting, continued5

msort : int list -> int list

REQUIRES: true
ENSURES: msort(L) evaluates to a sorted permutation of L

0611.2 (sorting.sml)

1 fun msort ([]: int list):int list = []

2 | msort [x] = [x]

3 | msort L =

4 let

5 val (A,B) = split L

6 in

7 merge(msort A,msort B)

8 end

Sorting, continued6

Analysis: split

Analysis: merge

Analysis: msort

1 Parallelism

Opportunity for parallelism

merge(msort A, msort B)

• Since this is functional code, there’s no dependency between the evaluation
of msort A and the evaluation of msort B

• An intelligent scheduler (with access to enough processors) could assign
these evaluation processes to different processors, and have them calculated
at the same time

• This is known as an “opportunity for parallelism”

Parallelism10

val (x,y) = (e1 ,e2)

Opportunity for Parallelism

val x = e1

(*doesn ’t depend on x

*)

val y = e2

Opportunity for Parallelism

val x = e1

(* DOES depend on x *)

val y = e2

NOT an opportunity

val x = case e1 of

p1 => e2

| ...

NOT an opportunity

val z = e1 e2

NOT an opportunity

Parallelism11

Work and Span

• The work (sequential runtime) of a function is the number steps it will take
to evaluate, when we do not take advantage of any parallelism

• The span (parallel runtime) of a function is the number of steps it will take
to evaluate, when we take advantage of all opportunities for parallelism (we
assume we have enough processors to do so)

• We will express both as a big-O complexity class, representing how the
runtime grows as the input size grows

• We will obtain both by analyzing the code, obtaining recurrences, and solving
those recurrences (using the tree method) to obtain the big-O complexity

Parallelism12

Calculating Work and Span

val x = (e1, e2)

Wx = We1 + We2

Sx = max (Se1, Se2)

If we assume that e1 and e2 take approximately the same amount of time to
evaluate, then

Wx = 2We1 Sx = Se1 = Se2

Parallelism13

split doesn’t have any parallelism

0611.0 (sorting.sml)

1 fun split ([]):int list * int list = ([] ,[])

2 | split ([x] : int list) = ([x],[])

3 | split (x::x’::xs) =

4 let

5 val (A,B) = split xs

6 in

7 (x::A,x’::B)

8 end

1

Ssplit(0) = k0

Ssplit(1) = k1

Ssplit(n) = k2 + Ssplit(n − 2)

2-4 . . .
5 Ssplit(n) is O(n)

Parallelism14

merge doesn’t either

0611.1 (sorting.sml)

1 fun merge (L1:int list ,[]: int list) = L1

2 | merge ([],L2) = L2

3 | merge (x::xs ,y::ys) =

4 (case Int.compare(x,y) of

5 GREATER => y:: merge(x::xs,ys)

6 | _ => x::merge(xs,y::ys))

1

Smerge(0) = k0

Smerge(n) ≤ k1 + Smerge(n − 1)

5 Smerge(n) is O(n)
Parallelism15

But msort does

0611.2 (sorting.sml)

1 fun msort ([]: int list):int list = []

2 | msort [x] = [x]

3 | msort L =

4 let

5 val (A,B) = split L

6 in

7 merge(msort A,msort B)

8 end

1 Recurrence:

Wmsort(0) = k0

Wmsort(1) = k1

Wmsort(n) ≤ 2Wmsort(n/2) + kn

Smsort(0) = k0

Smsort(1) = k1

Smsort(n) ≤ Smsort(n/2) + kn

2 Work Tree. . .
3 Measurements

Height: log n Span on the i -th level: kn
2i

4&5 Sum:

S(n) ≈
log n∑
i=0

kn

2i
≤
∞∑
i=0

kn

2i
= 2kn = O(n)

Parallelism16

Conclusions

• Work of msort was O(n log n)

• Making recursive calls to msort in parallel decreased runtime to O(n) –
the span

• Unable to take further advantage of parallelism, because split and
merge only made one recursive call

• This is a shortcoming of lists themselves: they’re an inherently sequential
data structure and are thus limited in how much parallelism can be utilized

Parallelism17

5-minute break

2 Trees in SML

Binary trees in SML

• We define a new type tree with the following syntax (which we’ll discuss
more Monday):

0611.3 (treeDefn.sml)

1 datatype tree =

2 Empty | Node of tree * int * tree

• This declares a new type called tree whose constructors are Empty and
Node . Empty is a constant constructor because it’s just a value of type
tree . Node takes in an argument of type tree*int*tree and
produces another tree .
• All trees are either of the form Empty or Node(L,x,R) for some
x : int (referred to as the root of the tree), some L : tree (referred
to as the left subtree), and some R : tree (referred to as the right
subtree)Trees in SML19

Arboretum

E

0611.9 (arboretum.sml)

1 val T0 = Empty

Trees in SML21

1

EE

0611.10 (arboretum.sml)

1 val T1 = Node(Empty ,1,Empty)

Trees in SML22

1

2

EE

E

0611.11 (arboretum.sml)

1 val T2 = Node(Empty ,1,Node(Empty ,2,Empty))

Trees in SML23

1

2

3

4

5

EE

E

E

E

E

0611.12 (arboretum.sml)

1 val T3 = Node(Empty ,1,Node(Empty ,2,Node(Empty

,3,Node(Empty ,4,Node(Empty ,5,Empty)))))

Trees in SML24

1

3

EE

2

EE

0611.13 (arboretum.sml)

1 val T4 = Node(Node(Empty ,2,Empty),1,Node(Empty

,3,Empty))

Trees in SML25

1

3

E4

EE

2

EE

0611.14 (arboretum.sml)

1 val T5 = Node(Node(Empty ,2,Empty),1,Node(Node(

Empty ,4,Empty),3,Empty))

Trees in SML26

1

4

E3

E5

EE

2

EE

0611.15 (arboretum.sml)

1 val T6 = Node(Node(Empty ,2,Empty),1,Node(Node(

Node(Empty ,5,Empty) ,3,Empty),4,Empty))

Trees in SML27

1

2

E3

4

EE

E

E

0611.16 (arboretum.sml)

1 val T7 = Node(Empty ,1,Node(Node(Empty ,3,Node(

Empty ,4,Empty)),2,Empty))

Trees in SML28

1

3

7

E14

EE

6

13

EE

E

2

5

11

EE

10

EE

4

9

EE

8

EE

0611.17 (arboretum.sml)

1 val T8 = Node(Node(Node(Node(Empty ,8,Empty),4,

Node(Empty ,9,Empty)) ,2,Node(Node(Empty ,10,

Empty) ,5,Node(Empty ,11, Empty))),1,Node(Node(

Empty ,6,Node(Empty ,13,Empty)) ,3,Node(Node(

Empty ,14,Empty),7,Empty)))

Trees in SML29

Basic Quantities

Height (or depth):

0611.4 (trees.sml)

1 fun height (Empty:tree):int = 0

2 | height (Node(L,_,R)) =

3 1 + Int.max(height L,height R)

Size
0611.5 (trees.sml)

1 fun size (Empty:tree):int = 0

2 | size (Node(L,_,R)) =

3 1 + size L + size R

Trees in SML30

Live Coding: Traversal

0611.6 (trees.sml)

1 fun inord (Empty:tree):int list = []

2 | inord (Node(L,x,R)) =

3 (inord L) @ (x:: inord R)

0611.7 (trees.sml)

1 fun preord (Empty:tree):int list = []

2 | preord (Node(L,x,R)) =

3 x::((preord L) @ (preord R))

Trees in SML32

Live Coding: Minimum

min : tree * int -> int

REQUIRES: true
ENSURES: min(T,default) evaluates to the smallest value in T, or
default if T is empty

Trees in SML34

0611.8 (trees.sml)

1 fun min (Empty:tree , default:int) = default

2 | min (Node(L,x,R),default) =

3 Int.min(min(L,x),min(R,x))

4

5 fun min ’ Empty = NONE

6 | min ’ (Node(L,x,R)) =

7 (case (min ’ L, min ’ R) of

8 (NONE ,NONE) => SOME x

9 | (NONE ,SOME z) => SOME(Int.min(x,z))

10 | (SOME y, NONE) => SOME(Int.min(x,y))

11 | (SOME y, SOME z) =>

12 SOME(Int.min(x,Int.min(y,z))))

Trees in SML35

Work/Span Analysis of Tree Functions

When analyzing tree function, we have two standard notions of size:

• Depth/height, d

• Size (number of nodes), n

To simplify our analysis, we often assume the tree in question is balanced. A
tree Node(L,x,R) is balanced iff

• L and R have approximately the same number of nodes

• Both L and R are balanced

A balanced tree of depth d will have approximately 2d nodes

Trees in SML36

Demonstration: min runtime
analysis

Depth-Analysis of min

0 Notion of size: depth d of the input tree
1 Recurrences:

Wmin(0) = k0

Wmin(d) ≤ k1 + 2Wmin(d − 1)

Smin(0) = k0

Smin(d) ≤ k1 + Smin(d − 1)

2-4 . . .
5 Wmin(d) is O(2d), Smin(d) is O(d)

If the input tree is balanced, then 2d ≈ n, where n is the size (number of nodes)

Trees in SML38

Demonstration: preord runtime
analysis

Size-Analysis of preord

0 Notion of size: number of nodes n of the input

1 Recurrences:

Wpreord(0) = k0

Wpreord(n) = 2Wpreord(n/2) + kn

NOTE: This assumes the tree is balanced

Spreord(0) = k0

Spreord(n) ≤ Spreord(n/2) + kn

2-4 . . .

5 Wpreord(n) is O(n log n), Spreord(n) is O(n)

Trees in SML40

Summary

• We can implement and analyze sorting algorithms using the tools we’ve
developed so far

• We can identify opportunities for parallelism and analyze how fast the code
would run if a scheduler could take advantage of all such opportunities.

• We can encode binary int trees in SML, write functions operating on them,
and analyze their parallel & sequential runtimes

• Trees typically have more opportunities for parallelism than lists

Trees in SML41

Next Time

• Tree Search

• Structural Induction on Trees

• Custom Datatypes

• Parametrized Polymorphism

Trees in SML42

Thank you!

	Sorting, continued
	Parallelism
	Trees in SML

