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Today’s slogan:

Make it faster



0 The Power of Strong Induction



Recall exp

exp : int -> int

REQUIRES: n ≥ 0

ENSURES: exp(n) ∼= 2n

0604.0 (pow.sml)

1 fun exp (0:int):int = 1

2 | exp n = 2 * exp(n-1)
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Analysis: exp Code Trace



We can write exp better

If n is even, then

2n =
(
2n div 2

)2
pow : int -> int

REQUIRES: n ≥ 0

ENSURES: pow(n) ∼= exp(n)
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By with a little help from my friends

0604.1 (pow.sml)

1 fun square (x:int):int = x * x

0604.2 (pow.sml)

1 fun even (x:int):bool = (x mod 2)=0
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pow definition

pow : int -> int

REQUIRES: n ≥ 0

ENSURES: pow(n) ∼= exp(n)

0604.3 (pow.sml)

1 fun pow (0:int):int = 1

2 | pow n =

3 case (even n) of

4 true => square(pow(n div 2))

5 | false => 2 * pow(n-1)
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Analysis: pow Code Trace



Equivalence

Thm. For all values n:int where n>=0,

exp(n) ∼= pow(n).
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Proof



square(exp(n div 2))
∼=

(exp(n div 2))* (exp(n div 2))

(fn x => x * x)(exp(n div 2))
∼=

(exp(n div 2))* (exp(n div 2))

Lemma 5 ? Prop. 1 ?
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Key Point:
Valuable Stepping



Valuable-Stepping Principle

Principle If e2 is a valuable expression, then

(fn x => e1) e2 ∼= [e2/x] e1

Notes:
• It’s ∼=, not =⇒! This is only an evaluation step if e2 is a value (eagerness).
• This equivalence often holds even if e2 is not valuable, but that requires

careful analysis of e1. Sometimes it doesn’t hold, though. Consider

e1 : (exp ∼1, x)

e2 : 1 div 0

• This equivalence can also be broken (or complicated) if shadowing is taking
place, or if e1 or e2 is impure. So only use it when those are not an issue.
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square(exp(n div 2))
∼=

(exp(n div 2)) * (exp(n div 2))

• Defn of square

• Lemma 5 : n div 2 is valuable and nonnegative

• Prop. 1 : if e valuable and nonnegative, exp(e) valuable

• Valuable-Stepping Principle: can substitute valuable expressions into
function body as if they were values, and obtain the same thing (up to ∼=)

The Power of Strong Induction13



5-minute break



1 Faster List Functions



Review: Lists



A lengthy function

len : int list -> int

REQUIRES: true
ENSURES: len L evaluates to the length of L

0604.4 (lists.sml)

1 fun len ([] : int list):int = 0

2 | len (x::xs) = 1 + len xs

3

4 val 5 = len [1,2,3,4,5]

5 val 2 = len [∼5000 ,19]

6 val 0 = len []
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Bringing Lists Together

(op @) : int list * int list -> int list

REQUIRES: true
ENSURES: If L1 is a list of length m and L2 is a lsit of length n, then L1@L2

evaluates to a list of length m + n whose first m elements are the elements of
L1 (in the same order they appear in L1) and whose last n elements are the
elements of L2 (in the same order they appear in L2)

0604.5 (lists.sml)

1 infix @

2 fun ([]: int list) @ L = L

3 | (x::xs) @ (L:int list) =

4 x::(xs @ L)

5

6 val [3,4] = [] @ [3,4]

7 val [1,2,3,4] = [1,2] @ [3,4]
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Ti esrever dna ti pilf

rev : int list -> int list

REQUIRES: true
ENSURES: rev L =⇒ L’, where L’ contains the same elements as L, in
the opposite order.

0604.6 (lists.sml)

1 fun rev ([]: int list):int list = []

2 | rev (x::xs) = (rev xs)@[x]

0604.6 (lists.sml)

1 val [] = rev []

2 val [4,3,2,1] = rev [1,2,3,4]
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Demonstration: @ and rev

traces



Today’s second slogan:

Sometimes the best way to make your
life easier is to make your life harder



trev

trev : int list * int list -> int list

REQUIRES: true
ENSURES: trev(L,acc) ∼= L’@acc , where L’ contains the same
elements as L, in the opposite order.

0604.7 (lists.sml)

1 fun trev ([]: int list ,acc:int list) = acc

2 | trev (x::xs,acc):int list = trev(xs,x::acc)
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Demonstration: trev traces



Tail Recursion

trev is an example of a tail recursive function.
Defn. A recursive function is said to be tail recursive if it does not perform

any computation on the result of a recursive call
0604.7 (lists.sml)

1 fun trev ([]: int list ,acc:int list) = acc

2 | trev (x::xs,acc):int list = trev(xs,x::acc)
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Summary

• More complex recursion patterns can be proven correct using strong
induction

• Referential transparency means we can swap out code with better
implementations

• We can reason about the runtime of functions

• Adding accumulator arguments can facilitate writing better code
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Next Time

• Proving stuff about lists

• Precisely reasoning about runtime

• More tail recursion
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Thank you!
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