
Extensional Code
Design

15-150 M21

Lecture 0604
04 June 2021



Today’s slogan:

Make it faster



0 The Power of Strong Induction



Recall exp

exp : int -> int

REQUIRES: n ≥ 0

ENSURES: exp(n) ∼= 2n

0604.0 (pow.sml)

1 fun exp (0:int):int = 1

2 | exp n = 2 * exp(n-1)

The Power of Strong Induction2



Analysis: exp Code Trace



We can write exp better

If n is even, then

2n =
(
2n div 2

)2
pow : int -> int

REQUIRES: n ≥ 0

ENSURES: pow(n) ∼= exp(n)

The Power of Strong Induction4



By with a little help from my friends

0604.1 (pow.sml)

1 fun square (x:int):int = x * x

0604.2 (pow.sml)

1 fun even (x:int):bool = (x mod 2)=0

The Power of Strong Induction5



pow definition

pow : int -> int

REQUIRES: n ≥ 0

ENSURES: pow(n) ∼= exp(n)

0604.3 (pow.sml)

1 fun pow (0:int):int = 1

2 | pow n =

3 case (even n) of

4 true => square(pow(n div 2))

5 | false => 2 * pow(n-1)

The Power of Strong Induction6



Analysis: pow Code Trace



Equivalence

Thm. For all values n:int where n>=0,

exp(n) ∼= pow(n).

The Power of Strong Induction8



Proof



square(exp(n div 2))
∼=

(exp(n div 2))* (exp(n div 2))

(fn x => x * x)(exp(n div 2))
∼=

(exp(n div 2))* (exp(n div 2))

Lemma 5 ? Prop. 1 ?

The Power of Strong Induction10



Key Point:
Valuable Stepping



Valuable-Stepping Principle

Principle If e2 is a valuable expression, then

(fn x => e1) e2 ∼= [e2/x] e1

Notes:
• It’s ∼=, not =⇒! This is only an evaluation step if e2 is a value (eagerness).
• This equivalence often holds even if e2 is not valuable, but that requires

careful analysis of e1. Sometimes it doesn’t hold, though. Consider

e1 : (exp ∼1, x)

e2 : 1 div 0

• This equivalence can also be broken (or complicated) if shadowing is taking
place, or if e1 or e2 is impure. So only use it when those are not an issue.

The Power of Strong Induction12



square(exp(n div 2))
∼=

(exp(n div 2)) * (exp(n div 2))

• Defn of square

• Lemma 5 : n div 2 is valuable and nonnegative

• Prop. 1 : if e valuable and nonnegative, exp(e) valuable

• Valuable-Stepping Principle: can substitute valuable expressions into
function body as if they were values, and obtain the same thing (up to ∼=)

The Power of Strong Induction13



5-minute break



1 Faster List Functions



Review: Lists



A lengthy function

len : int list -> int

REQUIRES: true
ENSURES: len L evaluates to the length of L

0604.4 (lists.sml)

1 fun len ([] : int list):int = 0

2 | len (x::xs) = 1 + len xs

3

4 val 5 = len [1,2,3,4,5]

5 val 2 = len [∼5000 ,19]

6 val 0 = len []

Faster List Functions16



Bringing Lists Together

(op @) : int list * int list -> int list

REQUIRES: true
ENSURES: If L1 is a list of length m and L2 is a lsit of length n, then L1@L2

evaluates to a list of length m + n whose first m elements are the elements of
L1 (in the same order they appear in L1) and whose last n elements are the
elements of L2 (in the same order they appear in L2)

0604.5 (lists.sml)

1 infix @

2 fun ([]: int list) @ L = L

3 | (x::xs) @ (L:int list) =

4 x::(xs @ L)

5

6 val [3,4] = [] @ [3,4]

7 val [1,2,3,4] = [1,2] @ [3,4]

Faster List Functions17



Ti esrever dna ti pilf

rev : int list -> int list

REQUIRES: true
ENSURES: rev L =⇒ L’, where L’ contains the same elements as L, in
the opposite order.

0604.6 (lists.sml)

1 fun rev ([]: int list):int list = []

2 | rev (x::xs) = (rev xs)@[x]

0604.6 (lists.sml)

1 val [] = rev []

2 val [4,3,2,1] = rev [1,2,3,4]

Faster List Functions18



Demonstration: @ and rev

traces



Today’s second slogan:

Sometimes the best way to make your
life easier is to make your life harder



trev

trev : int list * int list -> int list

REQUIRES: true
ENSURES: trev(L,acc) ∼= L’@acc , where L’ contains the same
elements as L, in the opposite order.

0604.7 (lists.sml)

1 fun trev ([]: int list ,acc:int list) = acc

2 | trev (x::xs,acc):int list = trev(xs,x::acc)

Faster List Functions21



Demonstration: trev traces



Tail Recursion

trev is an example of a tail recursive function.
Defn. A recursive function is said to be tail recursive if it does not perform

any computation on the result of a recursive call
0604.7 (lists.sml)

1 fun trev ([]: int list ,acc:int list) = acc

2 | trev (x::xs,acc):int list = trev(xs,x::acc)

Faster List Functions23



Summary

• More complex recursion patterns can be proven correct using strong
induction

• Referential transparency means we can swap out code with better
implementations

• We can reason about the runtime of functions

• Adding accumulator arguments can facilitate writing better code

Faster List Functions24



Next Time

• Proving stuff about lists

• Precisely reasoning about runtime

• More tail recursion

Faster List Functions25



Thank you!


	The Power of Strong Induction
	Faster List Functions

