
Lambdas

The central concept in
functional programming

15-150 M21

Lecture 0526
26 May 2021

0 To evaluate, or not to
evaluate?

Demonstration: Declaration
tracing

Lab Question

if b then e1 else e2

let

val v1 = e1

val v2 = e2

in

if b then v1 else v2

end

To evaluate, or not to evaluate?2

Eagerness

Key Fact:
SML is an eager or call-by value language: the arguments of a

function are evaluated all the way to values before being
substituted into the body of the function

E.g. consider a function f:int ->int such that

f(x) =⇒ if true then 5 else x

What happens when you evaluate f(3 div 0)?

To evaluate, or not to evaluate?3

Eagerness of “multivariable” functions

Recall that evaluation of tuples is left-to-right, so to evaluate f(e1 ,e2), we

• First evaluate e1 to a value v1

• Then evaluate e2 to a value v2

• Then compute f(v1 ,v2)

To evaluate, or not to evaluate?4

Recall that SML allows us to “infix” functions of 2 variables, and that the op

keyword un-infixed them, so we could check their type.

(op +) : int * int -> int

(op *) : int * int -> int

(op -) : int * int -> int

(op div) : int * int -> int

(op >) : int * int -> bool

(op =) : int * int -> bool

(op =) : string * string -> bool

To evaluate, or not to evaluate?5

op orelse?

Shortcircuiting of orelse

true orelse ((2 mod 0)=1)

We don’t need to evaluate ((2 mod 0)=1) here, since the first expression is
already true.

• If e1 ↪→ true , then (e1 orelse e2) ↪→ true without ever
evaluating e2

• If e1 ↪→ false , then (e1 andalso e2) ↪→ false without ever
evaluating e2

This means that orelse and andalso are not functions (contradicts
eagerness)!

To evaluate, or not to evaluate?7

1 Declaring and Applying
Functions

What are the values of type
T1 -> T2?

The syntax for an expression of type t1 -> t2 is

fn x => e

where e : t2 (possibly using the variable x:t1)

0526.1 (fn.sml)

1 val half : int -> int = fn x => x div 2

0526.2 (fn.sml)

1 val isNegative : int -> bool = fn x => x<0

0526.3 (fn.sml)

1 val apTen : (int -> int) -> int = fn f => f(10)

Declaring and Applying Functions9

Demonstration: Evaluating with
lambdas

Course slogan:

Functions are values

Functions are values

• Functions are pieces of data which can be passed around:
0526.4 (fn.sml)

1 val |> : int * (int -> string) -> string =

2 fn (x,f) => f x

3 infix |>

4 val "2" = 2 |> Int.toString

• Lambda expressions are values

fn x=>2+2 does not evaluate to fn x => 4

fn x => 1 div 0 is a value

Declaring and Applying Functions12

Not everything of an arrow type is a value

let

val k = 1 div 0

in

fn x => x

end

Declaring and Applying Functions13

What should this do?

0526.5 (closure.sml)

1 val foo : int = 4 + 5

2 val bar : int -> int =

3 fn x => foo div (foo - x)

4 val foo : int = 6

5 val y : int = bar foo

Declaring and Applying Functions14

Closures

Whenever a function value is declared, SML stores two pieces of information as
part of the binding:

• The fn value

• A “snapshot” of all the bindings in the environment at the time. This
snapshot is called the closure of the function

Whenever that function is called, SML will use the closure to substitute variables
in the function body.

Declaring and Applying Functions15

Demonstration: Declaration
tracing with closures

Problem: Self-reference

What if we want to implement recursive functions? For instance, the exponential
function can be implemented recursively using the following mathematical fact:

20 = 1

2n = 2 · 2n−1 (n > 0)

0526.6 (fun.sml)

1 val exp : int -> int =

2 fn n => if n=0 then 1 else 2*exp(n-1)

Declaring and Applying Functions17

Let’s have some fun. . .

SML provides the fun keyword to declare a function value which is allowed to
refer to itself

0526.7 (fun.sml)

1 fun exp (n:int):int =

2 if n=0 then 1 else 2 * exp(n-1)

Declaring and Applying Functions18

5-minute break

2 Documenting Functions

Words of wisdom:
Programs must be written for people to read, and only

incidentally for machines to execute

Types are a kind of documentation

A primary purpose of types is as documentation: the type of a function tells you
a lot of information about what that function is.

When providing documentation of your code, at a minimum you must say what
types each of the functions have

0526.7 (fun.sml)

1 (* exp : int -> int

Documenting Functions21

Preconditions

Specifying that exp : int -> int begins to document it, but we would
also want to tell a user not to apply exp to a negative number.

A precondition is a logical statement constraining what inputs are allowed to a
function.

0526.7 (fun.sml)

1 (* exp : int -> int

2 * REQUIRES: n>=0

By convention, we write REQUIRES: true to mean that there is no
precondition – any input of the correct type suffices.

Documenting Functions22

Saying what the function actually does

Next, we want to tell our user what the function will do when given an input that
satisfies the REQUIRES. We call this a postcondition.

0526.7 (fun.sml)

1 (* exp : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: exp(n) == 2^n

The type, precondition, and postcondition form the specification of a function.
f is said to satisfy its spec if f has the appropriate type, and for every v of the
input type satisfying the REQUIRES, f(v) satisfies the ENSURES.

Documenting Functions23

Testing

As (probably) covered in lab, you can test your function by writing val

declarations where the right-hand side is a value you’re not allowed to shadow.
0526.7 (fun.sml)

1

2 val 1 = exp 0

3 val 131072 = exp 17

Be sure you’re actually performing the test, and not actually shadowing
something!

Documenting Functions24

The 5-step methodology

Whenever you implement any function you should:

1 Specify the type

2 Write an appropriate REQUIRES (weak as possible)

3 Write an appropriate ENSURES (strong as possible)

4 Implement the function

5 Write enough test cases

Documenting Functions25

0526.7 (fun.sml)

1 (* exp : int -> int

2 * REQUIRES: n>=0

3 * ENSURES: exp(n) == 2^n

4 *)

5 fun exp (n:int):int =

6 if n=0 then 1 else 2 * exp(n-1)

7

8 val 1 = exp 0

9 val 131072 = exp 17

Documenting Functions26

Totality

Defn. A function value f : t1 -> t2 is said to be total if, for all values
v : t1, the expression f(v) is valuable.

Examples:

• (fn s => s)

• op +

• Int.toString

Non-examples:

• div

• exp

Documenting Functions27

When are function expressions
extensionally equivalent?

Extensional Equivalence of Functions

Recall referential transparency: extensionally-equivalent expressions are
interchangeable in code. So if f ∼= g, then we need f and g to behave exactly
the same.

Defn. Two expressions f,g of type t1 -> t2 are extensionally
equivalent if for all values v : t1,

f(v) ∼= g(v)

Documenting Functions29

3 Patterns

exp traces are clunky

exp 4

=⇒ if 4=0 then 1 else 2*exp(4-1)

=⇒ 2*exp(3)

=⇒ 2*(if 3=0 then 1 else 2*exp(3-1))

=⇒ 2*(2* exp (2))

=⇒ 2*(2*(if 2=0 then 1 else 2*exp(2-1)))

=⇒ 2*(2*(2* exp (1)))

=⇒ 2*(2*(2*(if 1=0 then 1 else 2*exp

(1-1))))

=⇒ 2*(2*(2*(2* exp (0))))

=⇒ 2*(2*(2*(2*(if 0=0 then 1 else 2*exp

(0-1)))))

Patterns30

There’s a better way...

0526.8 (patterns.sml)

1 fun exp (0:int):int = 1

2 | exp n = 2 * exp(n-1)

Patterns31

Much better. . .

exp 4

=⇒ 2 * exp(3)

=⇒ 2 * 2 * exp(2)

=⇒ 2 * 2 * 2 * exp(1)

=⇒ 2 * 2 * 2 * 2 * exp (0)

=⇒ 2 * 2 * 2 * 2 * 1

=⇒ 16

Patterns32

Pattern Matching

In this example, 0 and n are patterns that SML is matching against.

When pattern matching, SML will try to match with each of the patterns in the
order they’re written, and step into the first clause it matches with.

Patterns33

0526.9 (patterns.sml)

1 fun zeros (0:int ,0:int):string = "Both"

2 | zeros (0,n) = "First"

3 | zeros (m,0) = "Second"

4 | zeros (m,n) = "Neither"

0526.10 (patterns.sml)

1 fun zeros ’ (0:int ,0:int):string = "Both"

2 | zeros ’ (0,_) = "First"

3 | zeros ’ (_,0) = "Second"

4 | zeros ’ _ = "Neither"

Patterns34

Case Expressions

0526.11 (patterns.sml)

1 fun zeros ’’ (n:int ,m:int):string =

2 case (n,m) of

3 (0,0) => "Both"

4 | (0,_) => "First"

5 | (_,0) => "Second"

6 | _ => "Neither"

Patterns35

Other Places to Pattern-Match

• Lambda expression clauses:

val isZeroOrOne : int -> bool

= fn 0 => true | 1 => true | _ => false

• val declarations

val 8 = exp 3

Patterns36

Allowed patterns

• Constructors
fn true => e1 | false => e2

• Variable names
fn (x:int) => x

• Wildcards
fn (_ : string) => 2

• Tuples of patterns
fun foo ((0,0),_) = "a"

| foo ((_,0) ,(7,_)) = "b"

| foo (_, (8,8)) = "c"

| foo _ = "d"

Patterns37

Not patterns

• Function applications
(* Doesn ’t work *)

val m+n = 2

val (s1 ^ s2) = "hello world"

• Non-match-able types
(* Doesn ’t work *)

val (fn x => e) : int -> string = f

• Repetitive patterns
(* Doesn ’t work *)

fun equal (m:int ,m:int) = true

| equal _ = false

Patterns38

bool casing

Note: the following are equivalent:
case b of

true => e1

| false => e2

if b then e1 else e2

Common error: the “flase” bug

case b of

flase => 2

| true => 1

Patterns39

Proving the valuability of exp

Prop. For all values n:int with n ≥ 0, exp(n) is valuable.

Proof. by induction on n.
BC: n=0.

exp 0 =⇒ 1. (first clause, exp)

IH : Suppose for some n>=0, exp(n) is valuable.
WTS: exp(n+1) is valuable.

exp(n+1) =⇒ 2 * exp(n) (second clause, exp)

=⇒ 2 * v (for some value v, by IH)

=⇒ v’ (for some value v’, by totality of op*)

Patterns40

Summary

• SML provides ways to control when expressions get evaluated

• Shadowing is not reassignment: the old binding is remembered, particularly
in function closures

• Functions are specified by their applicative behavior

• Pattern matching facilitates concise, elegant function declarations

Patterns41

Next Time

• Recursion & Induction

• Strong Induction

• Recurrences & sequential runtime analysis

Patterns42

Thank you!

	To evaluate, or not to evaluate?
	Declaring and Applying Functions
	Documenting Functions
	Patterns

