
Functional Code

15-150 M21

Lecture 0524
24 May 2021



Friday’s slogan:

Computation is evaluation



Today’s slogan:

Computation is typed evaluation



0 Compile Time



Another way Person 2 could be unhelpful

Person 1: Hey, do you know what 217 is?
Person 2: Yeah, it’s banana.
Here, Person 2 is just saying nonsense. Clearly, ‘banana’ is not the correct answer
to what 217 is.

Moral: Queries like “what is 217? also come with implicit constraints on what
kind of thing the answer is allowed to be. Note that ‘banana’ might be a value,
it’s just not the proper type of value.

Compile Time3



smlnj REPL



Typechecking

Key Point

SML is strongly-typed: every expression we want to evaluate
must have a type.

Compile Time5



Demonstration: Typechecking



int

• int is a type

• Each integer literal is a value of type int. 0:int, 17: int, ∼23: int,
etc.

• If e:int, then ∼e:int
• If e1:int and e2:int, then (e1+e2):int

• If e1:int and e2:int, then (e1 * e2):int

• If e1:int and e2:int, then (e1 - e2):int

• If e1:int and e2:int, then (e1 div e2):int

• If e1:int and e2:int, then (e1 mod e2):int

Compile Time7



string

• string is a type

• Each string literal is a value of type string . So "hello":string ,
"":string , "mwef8892 cjqq" :string , etc.

• If e1:string and e2:string , then (e1 ^ e2):string

• If e:int, then Int.toString(e):string

Compile Time8



bool

• bool is a type

• There are exactly two values of type bool , namely true:bool and
false:bool .

• If e:bool , then (not e):bool .

• If e1:bool and e2:bool , then (e1 orelse e2):bool and
(e1 andalso e2):bool .

• If t is any type and e1:t and e2:t and b:bool , then

(if b then e1 else e2) : t

• If e1 and e2 are expressions of type int (or string , bool , some other
types), then

(e1 = e2) : bool

Compile Time9



Check Your Understanding

• Is this expression well-typed? If so, what’s its type? What happens when you
evaluate it?

(if true then 5+5 else 7) = 1

• Is this expression well-typed? If so, what’s its type? What happens when you
evaluate it?

if (3+3) =6 then "red" else 42

• Is this expression well-typed? If so, what’s its type? What happens when you
evaluate it?

1 div 0

Compile Time10



Why do we want this?

More often than not, inconsistent typing is a bug

A good tool enables you to do what you want; a smart tool
prevents you from doing what you shouldn’t

Compile Time11



Important notes about typechecking

• Recursive: The type of an expression is determined by the types of its
sub-expressions

• Static: We do not evaluate the code when typechecking

Disallows:

def foo(x):

if (x==2): return "a"

else: return 3

The type of foo(v) depends on the value of v

Compile Time12



Key Point: Compile time vs. runtime

The execution of SML code happens in two steps:

• Compile Time: Syntax- and Type-checking

• Runtime: Evaluation

Compile Time13



1 Runtime



Product Types

If T1 and T2 are types, then T1*T2 is a type – the product type of T1 and T2

Pair Rule If e1:T1 and e2:T2, then (e1 ,e2):T1 * T2

To evaluate (e1 ,e2):

1 Evaluate e1 down to some value v1 (if possible)

2 Evaluate e2 down to some value v2 (if possible)

3 The value of (e1 ,e2) is (v1 ,v2)

Runtime14



int

• int is a type

• Each integer literal is a value of type int. 0:int, 17: int, ∼23: int,
etc.

• If e:int, then ∼e:int
• If e1:int and e2:int, then (e1+e2):int

• If e1:int and e2:int, then (e1 * e2):int

• If e1:int and e2:int, then (e1 - e2):int

• If e1:int and e2:int, then (e1 div e2):int

• If e1:int and e2:int, then (e1 mod e2):int

• If P : int*int, then (Int.max P):int

• If P : int*int, then (Int.min P):int

Runtime15



Demonstration: Evaluation



smlnj REPL: val declarations



val declarations

Often it’s helpful to give names to particular values, to be able to refer to them
later.

val x : t = e

What SML does with this syntax:

1 (Compile Time) Checks that e is a well-typed expression of type t

2 (Runtime) Evaluates e

3 (Runtime) If evaluating e results in a value (call it v), SML binds the value
v to the variable name x.

We denote such a binding with the notation [v/x]. Note this is not valid SML
syntax, but mathematical notation about SML.

Runtime18



The Environment

Each valid val declaration adds a binding to the environment

To evaluate an expression containing variable names, we substitute in for each
variable the most recent binding to that variable in the environment

Runtime19



Moral: Don’t shadow!



let expressions

val x : int = let

val y = 2

val z = y * y

in

3 + z

end

[7/x] is added to the environment, but [2/y] and [4/z] are not.

Runtime21



Check Your Understanding

What value gets bound to z as a result of this code?
val z = let

val y = let

val z = 2

in

z * z

end

val z = y + y

val y = 5

in

y - z

end

Runtime22



5-minute break



2 Reasoning About Behavior



Trichotomy

Claim For every well-typed expression e, exactly one of the following holds:

• e =⇒ v for some value v

• the evaluation of e raises some exception

• the evaluation of e loops forever

Reasoning About Behavior24



The Syntactic Hierarchy

Reasoning About Behavior25



Extensional Equivalence

Two expressions e and e’ are equivalent if they have the same runtime behavior.

Defn. Two well-typed expressions e and e’ are said to be extensionally
equivalent (written e ∼= e’)if they have the same type and either:

• there is some value v such that e ↪→ v and e’ ↪→ v

• the evaluation of e and e’ both raise the same exception

• the evaluation of both e and e’ loop forever

Reasoning About Behavior26



Nice facts about extensional equivalence

• ∼= is an equivalence relation

• If e1 =⇒ e2, then e1 ∼= e2.
Check Your Understanding: Does e1 ∼= e2 imply e1 =⇒ e2?

No (e.g. 5 ∼= 4+1 but 5 6=⇒ 4+1)

Reasoning About Behavior27



Referential Transparency

Extensionally-equivalent expressions are interchangeable: if e ∼= e’, then any
instance of e in a piece of SML code can be replaced with e’, without changing
the behavior of the overall code.

This is useful because it allows us to swap out parts of code with better
implementations without affecting the surrounding code.

Reasoning About Behavior28



3 Function Application



Recall exp

Recall this expression from the previous lecture:

exp 17

Of course, 17 is a value of type int. But we need to say what type of
expression exp is, and how that determines the type of (exp 17).

Function Application29



Arrow Types

If T1 and T2 are types, then T1 -> T2 is a type: the type of functions from
T1 to T2.

Application Rule If f : T1 -> T2 and e : T1, then

(f e) : T2

• ∼ : int -> int

• exp : int -> int

• Int.toString : int -> string

Function Application30



Infixing

Some functions of type (T1 * T2) -> T3 are written in infix position
(between its arguments) instead of prefix position. In SML, the op keyword
turns infix functions into prefix ones.

(op +) : int * int -> int

(op * ) : int * int -> int

(op -) : int * int -> int

(op div) : int * int -> int

(op >) : int * int -> bool

(op =) : int * int -> bool

(op =) : string * string -> bool

Function Application31



Summary

• Expressions must be well-typed in order to be evaluated

• Syntax & Type checking happen at compile time, which is before runtime,
when evaluation occurs

• We can reason mathematically about runtime using bindings, =⇒, and ∼=
• Functions are expressions that can be applied to other (appropriately-typed)

expressions

Function Application32



Next Time

• Functions and closures

• Pattern Matching

• Recursion

Function Application33



Thank you!


	Compile Time
	Runtime
	Reasoning About Behavior
	Function Application

