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Proof. T
e for a natur:

(b,

What this diagram shc is that the entire transformation 7: ) = X is completely
ermined from the gle value X(e), because for each object b of C, the

component 7, : , ¢) = X(b) must take an element f € C(b, c) (i.e., a morg

X(f)(€), according to the commutativity of this diagram.

is that the naturality condition on
( is sufficient to ensure that 7 is already
ne(Ide) € of its component 7 (:
such value extends to a natural transformation 7.

More in detail, the bijection is established by the map

mponent of a nal
second step is evaluation at I (¢, ¢).

The inverse of this map takes f ) to the natural transformation n’ with components

=X(-)(f):C — X(d).

https://ncatlab.org/nlab/show/Yoneda+lemma
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4

Titans of Mathematics Clash Over Epic
Proof of ABC Conjecture

Despite multiple conferences dedicated to explicating Mochizuki's
proof, number theorists have struggled to come to grips with its
underlying ideas. His series of papers, which total more than 500
pages, are written in an impenetrable style, and refer back to a further
500 pages or so of previous work by Mochizuki, creating what one
mathematician, Brian Conrad of Stanford University, has called “a

sense of infinite regress.”

But the meeting led to an oddly unsatisfying conclusion: Mochizuki

couldn’t convince Scholze and Stix that his argument was sound, but
they couldn’t convince him that it was unsound. Mochizuki has now
posted Scholze’s and Stix’s report on his website, along with several
reports of his own in rebuttal. (Mochizuki and Hoshi did not respond

to requests for comments for this article.)

Martin-L6f Type Theory Speaking the Language mitt HoTT



Language & Deduction

5 Martin-L6f Type Theory Speaking the Language mitt HoTT



Language & Deduction

5 Martin-L6f Type Theory Speaking the Language mitt HoTT



Language & Deduction

#22, Xm0 messe VOOeO Ox 55
SE0OM, %= He 4220 EMOOCSOSRHSEHON
O, e SN +M2 S+ S OOeO

ST He AnNENe QF

QoM 2 eV
00O 2 QT+ E &N

5 Martin-L6f Type Theory Speaking the Language mitt HoTT



Language & Deduction

#22, Xm0 messe VOOeO Ox 55
SE0OM, %= He 4220 EMOOCSOSRHSEHON
O, e SN +M2 S+ S OOeO

ST He AnNENe QF

QoM 2 eV
00O 2 QT+ E &N

Therefore...

#20 LORRSON mese LOOeO Ox V07 He
22N HEeM M O

5 Martin-L6f Type Theory Speaking the Language mitt HoTT



There are certain general conditions under which the structure of a language is regarded
as exactly specified. Thus, to specify the structure of a language, we must characterize
unambiguously the class of those words and expressions which are to be considered
meaningful. In particular, we must indicate all words which we decide to use without
defining them, and which are called “undefined (or primitive) terms”; and we must give
the so-called rules of definition for introducing new or defined terms. Furthermore, we
must set up criteria for distinguishing within the class of expressions those which we call
“sentences.” Finally, we must formulate the conditions under which a sentence of the
language can be asserted. In particular, we must indicate all axioms (or primitive
sentences), i.e., those sentences which we decide to assert without proof; and we must
give the so-called rules of inference (or rules of proof) by means of which we can deduce
new asserted sentences from other sentences which have been previously asserted.
Axioms, as well as sentences deduced from them by means of rules of inference, are
referred to as “theorems” or “provable sentences.”

- Alfred Tarski, The Semantic Conception of Truth (1944)
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b=0

if (b=4 or b=5):
do_thingl ()

else:
do_thing2()
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Two Judgments of MLTT

x: T

Term Type

x=x":T
Judgmental
Equality
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Interpretation 1: Spaces

x: T X

x=x T

Types — Spaces
Terms — Points
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Interpretation

Type Theory: MLTT describes terms and types
Homotopy : MLTT describes points and spaces

Logic: MLTT describes witnesses and propositions

By discussing these in a common language, we can
identify similarities

“transpose”’ concepts
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Four Judgments of MLTT
T type x: T

TiT/type x=x:T
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What MLTT is made of

Types (built up recursively, along with the terms-in-context)
Terms-in-context (built up recursively, along with the types)
Contexts

Inference Rules

Derivations
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Suppose we have types T1,..., T,.
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Contexts give MLTT “memory”

Suppose we have types T1,...,T,. A consists of a finite
(possibly empty), ordered list of typing judgments

x1: T, x0Ty, ... x, 0 T,

Type Theory : Declaring some typed variables

Logic: Assuming the truth of some propositions (with witnesses)

Homotopy : Declaring names for points of given spaces
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Let [ be a context.
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Judgments-in-Context

Let [ be a context.

[ = T type
[Fx: T
[T =T type
TEx=x:T
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Inference Rules

An is of the form

Hi Ho - Hy
C

For instance,

[+ T type
[ =T =T type
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Example: Booleans

$ true

> true : Dbool
$ false

> false : bool
$ (if true

$ then 5
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Example: Booleans

$ true

> true : Dbool
$ false

> false : bool
$ (if true

$ then 5

$ else 4)
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Example: Booleans

true
true : Dbool
false
false : bool
(if true
then 5
else 4)
5

V & & & V &6 V &
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true : Dbool
false
false : bool
(if true
then 5
else 4)
5
(if false then 5 else 4)

&hH V H H LV LV H
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Example: Booleans

true
true : Dbool

false
false : bool

(if true

then 5

else 4)
5

(if false then 5 else 4)
4

V & V 6 6 6 V & V &
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Example: Booleans

The type of booleans will be denoted 2 and contain exactly two terms, 0
and 1p. We'll formally express this using inference rules.
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Example: Booleans

The type of booleans will be denoted 2 and contain exactly two terms, 0
and 1p. We'll formally express this using inference rules.

[+ 2 type

I'F02:2 FF12:2
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Boolean Elimination & Computation (non-dependent)

'ETtype TEpy: T TEp: T
[,x:2Find2(po, p1,x) : T
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Boolean Elimination & Computation (non-dependent)

'ETtype TEpy: T TEp: T
[,x:2Find2(po, p1,x) : T

'=Ttype TEpo: T TEp: T
[ inda(po, p1,02) = po: T
'=Ttype THEpo: T TEp: T
[ Finda(po, p1,12) =p1: T
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Example: Binary Products
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Example: Binary Products
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Example: Binary Products

Formation:
- Atype [ F B type

= A X B type
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Example: Binary Products

Formation:
- Atype [ F B type

= A X B type

Introduction:
[Fx:A TTFy:B

[ (x,y):AxB

(also need “Congruence Rule” to state that if x = x’ and y = y/, then (x,y) = (x',y’))
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Example: Binary Products

Formation:
- Atype [ F B type

= A X B type

Introduction:
[Fx:A TTFy:B

[ (x,y):AxB

(also need “Congruence Rule” to state that if x = x’ and y = y/, then (x,y) = (x',y’))

Elimination and Computation: Next time!
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e List the terms of type 2 x 2

e Given terms b; : 2 and b, : 2, use indy to come up with
» a term bs : 2 which is judgmentally equal to 15 if by = 03, and 0y if by = 13
» a term by : 2 which is judgmentally equal to 15 if both by and b, are judgmentally equal to
15, and 03 otherwise
» aterm bs : 2 which is judgmentally equal to 15 if either by = 15 or b, = 13, and 0, otherwise

e Verify that, up to a trivial relabelling, (A x B) x C has the same
terms as A x (B x C)

e Give the analogous introduction of a type 3 with exactly three terms.

e How many terms are there of type 2 x 2 x 37
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Example: Arrow Types
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Example: Arrow Types

For any sets A, B,
ANBCA
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Example: Arrow Types

For any sets A, B,
ANBCA

l.e. x € AN B implies x € A.
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Example: Arrow Types

For any sets A, B,
ANBCA

l.e. x € AN B implies x € A.
Proof. Assume x € AN B.
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Example: Arrow Types

For any sets A, B,
ANBCA

l.e. x € AN B implies x € A.

Proof. Assume x € AN B. Then we have x € A by definition of set
intersection.
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Example: Arrow Types

For any sets A, B,
ANBCA

l.e. x € AN B implies x € A.

Proof. Assume x € AN B. Then we have x € A by definition of set
intersection. So x € A, as desired. []
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Proof Relevant Version

For any sets A, B,
ANBCA

i.e. there is a witness of (x € AN B) — (x € A).
Proof.
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Proof Relevant Version

For any sets A, B,
ANBCA

i.e. there is a witness of (x € AN B) — (x € A).
Proof. Given h: (x € AN B),
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Proof Relevant Version

For any sets A, B,
ANBCA

i.e. there is a witness of (x € AN B) — (x € A).

Proof. Given h: (x € AN B), we have h; : (x € A) and h, : (x € B) by
definition of set intersection.
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Proof Relevant Version

For any sets A, B,
ANBCA

i.e. there is a witness of (x € AN B) — (x € A).

Proof. Given h: (x € AN B), we have h; : (x € A) and h, : (x € B) by
definition of set intersection. So output hy : (x € A). []
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Moral

In proof-relevant mathematics, a proof of P — @ is
a transformation converting witnesses of P into
witnesses of Q.
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Modus Ponens
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Modus Ponens

28 Martin-L6f Type Theory Judgments, Contexts, and Types mitt HoTT



Modus Ponens

(x e ANB) (x€ ANB) — (x € A)

(x € A)
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Modus Ponens

(x € AN B) (x e ANB) = (x € A)

(x € A)
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Lambda Expressions
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Lambda Expressions

AX.€
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Lambda Expressions

AX.€

(Ah.h1) : (x e ANB) = (x € A)

29



Check Your Understanding

Write terms of the following types
o P— P
e P—(Q—P)
e (P> (Q—->R)—>(P—Q)—(P—R))
e (Q—-R)—>((P—>Q)—=(P—R))
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Example Solutions

o P— P
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Example Solutions

o P— P
Ah.

Martin-L6f Type Theory Judgments, Contexts, and Types



Example Solutions

o P— P
Ah.h
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Example Solutions

o P— P
Ah.h

e P—(Q—P)
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Example Solutions

o P— P
Ah.h

e P—(Q—P)
AD.
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Example Solutions

o P— P
Ah.h

e P—(Q—P)
AP.AG.
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Example Solutions

o P— P
Ah.h

e P—(Q—P)
AP.AG.p
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Example: Arrow Types
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Example: Arrow Types

Formation:
= Atype [ F B type

[ A — B type
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Example: Arrow Types

Formation:
N Atype [ F B type

[ A — B type

Introduction:
' x:AFe(x): B

= (Ax.e(x)): A— B

A
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Example: Arrow Types

Formation:
= Atype [ F B type

[ A — B type

Introduction:
' x:AFe(x): B

= (Ax.e(x)): A— B

A

(also need “Congruence Rule” to state that if e(x) = €/(x) for arbitrary x, then

(Ax.e(x)) = (Ax.€'(x)))
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Elimination:
[Ff:A— B

F,X:Al—f(x):Be

V
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Elimination:
[Ff:A— B

[x:AFf(x):B

ev

Computation:
x:AFe(x): B
Mx:AF (Ay.e(y))(x) =e(x): B

Ef:A—B
M- (Mx.f(x))=f:A— B

B

n
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Summary

Type Theory

Homotopy

Logic
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Summary

2 X —

Type Theory Booleans

Homotopy

Logic
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Summary

p X N
Type Theory Booleans
Homotopy Product spaces
Logic
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Summary

2 > _
Type Theory Booleans
Homotopy Product spaces
Logic Implication
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Summary

2 X —

Type Theory Booleans

Homotopy | Discrete 2-point space | Product spaces

Logic Implication
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Summary

2 X —

Type Theory Booleans

Homotopy | Discrete 2-point space | Product spaces

Logic Conjunction | Implication
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Summary

2 X —

Type Theory Booleans Functions

Homotopy | Discrete 2-point space | Product spaces

Logic Conjunction | Implication
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Summary

2 X —
Type Theory Booleans 7 Functions
Homotopy | Discrete 2-point space | Product spaces 7
Logic 7 Conjunction | Implication
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Deduction in MLTT



Idea

Hy o Hy s
j3,1 Ho Hio Hiua
J2.1 Hs Top Hs He Hr J23 J2.4
Ji1 J1.2 J13 J1.4 Ji5
C

35 Martin-L&éf Type Theory Deduction in MLTT mitt HoTT



Idea

Hy Ho Ha Hs
j3,1 Ho Hio Hiua
J2.1 Hs Top Hs He Hr J23 J2.4
Ji1 J1.2 J13 J1.4 Ji5
C
is a deduction of
Hi Ho ... Hnpp
C
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Idea

A derived rule

Hi Ho ... He

can
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Idea

A derived rule

Hi Ho

can

Be used to derive more rules
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Idea

A derived rule

Hi Ho ... He

can
Be used to derive more rules

Serve as a formally-proven theorem about how our type theory works
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Idea

A derived rule

Hi Ho ... He

can
Be used to derive more rules

Serve as a formally-proven theorem about how our type theory works
We'll need some simple rules to make our deduction system work.
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Judgmental Equality is an equivalence relation
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Judgmental Equality is an equivalence relation

[+ A type
A=A type
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Judgmental Equality is an equivalence relation

[ A type = A= B type
[FA=Atype [+ B=Atype
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Judgmental Equality is an equivalence relation

[+ A type 'FA=Btype THFA=Btype IF B=C type

[FA=Atype [F B=Atype = A= C type
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Judgmental Equality is an equivalence relation

[+ A type 'FA=Btype THFA=Btype IF B=C type

[FA=Atype [F B=Atype = A= C type

[Fa: A
[Fa=a: A

37 Martin-L&f Type Theory Deduction in MLTT mitt HoTT



Judgmental Equality is an equivalence relation

[+ A type 'FA=Btype THFA=Btype IF B=C type
[FA=Atype [F B=Atype = A= C type

[Fa: A [Fa=b:A
[Fa=a:A TFb=a:A
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Judgmental Equality is an equivalence relation

[+ A type 'FA=Btype THFA=Btype IF B=C type
[FA=Atype [F B=Atype = A= C type

[Fa: A [Fa=b:A TFa=b:A ITEFb=c:A
[Fa=a:A THFb=a:A [Fa=c:A
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Variable Rule and Weakening

[~ A type
[ x:AFx: A
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Variable Rule and Weakening

[~ A type
[ x:AFx: A

[FAtype AR T
x:AAFT

774
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Variable Rule and Weakening

[~ A type
[ x:AFx: A

[FAtype AR T

[ x:AAFg
Allows us to define the B over A:
- Atype [ F B type
['x:AF B type

38 Martin-L&éf Type Theory Deduction in MLTT mitt
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Moving variables around
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Moving variables around

Variable Conversion Rule

FTFA=A T, x:AAFT
[ x: A AT
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Substitution

Deduction in MLTT



Moving variables around

41 Martin-L&f Type Theory Deduction in MLTT mitt HoTT



Moving variables around

Substitution Rule
[Fa:A TOx:AAFT

[, Ala/x] = J[a/x]
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Moving variables around

Substitution Rule
[Fa:A TOx:AAFT
I Ala/x] = Jla/x]

Substitution Congruence Rules
[Fa=4d:A I,x:A At B type
[, Ala/x] - Bla/x] = B[d'/x] type
[Fa=4ad:A INx:AAFb:B
[, Ala/x] F bla/x] = b[a'/x] : B[a/x]

41 Martin-L&éf Type Theory Deduction in MLTT mitt

HoTT



Derived Structural Rules
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Derived Structural Rules

Substituting with a fresh variable

N x:AAFT '
[x' A AX /x| E T[X/x] x/x
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Derived Structural Rules

Substituting with a fresh variable

N x:AAFT '
[x' A AX /x| F T[X'/x] x/x

Interchange rule

EBtype Ix:Ay:BARJT

y:B,x:AA AT
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Derivation
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Deduction



252
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252

MF0p:2
r,X:2|_02:2W)\
= (Ax.02) : 2 — 2

FF12:2
r,x:2|—12:2W
M- (Ax.12) : 2 — 2
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252

MF0p:2
r,x:2|—02:2W

TF(Ox07) 252"

FF12:2
r,x:2|—12:2W
M= (Ax.13):2— 2

46 Martin-L6f Type Theory

[+ 2 type 5
Mx:2Fx:2

I'I—()\X.x):2—>2)\

uction in MLTT
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252

MF0p:2
r,x:2|—02:2W

TF(Ox07) 252"

FF12:2
r,x:2|—12:2W
M= (Ax.13):2— 2

46 Martin-L6f Type Theory

[+ 2 type 5
Mx:2Fx:2 \
ME (Ax.x):2— 2

F2type TH12:2 [TH02:2
[,x:2F indy(12,02,x) : 2
[+ ()\X.indg(lg,()z,x)) 2 — 2
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Appending Definitions To Derivations

Hi Ho He

TEa: A
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Appending Definitions To Derivations

Hi Ho He

TEa: A
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Appending Definitions To Derivations

Hi Ho He

TEa: A

Hi Ho - Hy
[Fc: A
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Appending Definitions To Derivations

Hi Ho He

TEa: A

7’[1 Hz Hk Hl H2 Hk
[Fc: A [Fc=a: A
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Example: The Identity Function

[ - A type 5
[ x:AFx: A \
(- (Axx):A— A

[Fida:=(Axx): A— A
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Example: Composition

comp := (Ag.Af.\x.g(f(x))) : (B—-C)—=(A—B)— (A— ()
(See book for formal derivation)

gof:=((compg)f): A= C
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Example: The Left Unit Law

Check Your Understanding JRBEIGOYES

r-f:A—B
[ x:AFidg(f(x)) =

f(x): B (2)
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Example: The Left Unit Law

Check Your Understanding JRBEIGOYES

r-f:A—B
[ x:AFidg(f(x)) =

f(x): B (2)

Then. ..

MFidgof =f
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Example: The Left Unit Law

Check Your Understanding JRBEIGOYES

r-f:A—B
[ x:AFidg(f(x)) =

f(x): B (2)

Then. ..

[Ff:A—B
[ Ax.f(x)=f
[(Fidgof=f

n
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Example: The Left Unit Law

Check Your Understanding JRBEIGOYES

F,X:Al—ldg((): f(x): B
Then. ..
[HfAsB
[+ Ax.idg(f(x)) = Ax.f(x) [ Ax.f(x)=f

[Fidgof =f
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Example: The Left Unit Law

Check Your Understanding JRBEIGOYES

r-f:A—B
[ x:AFidg(f(x)) =

f(x): B (2)

Then. ..

[ x: At ids(f(x)) = f(x) [Ff:A—B
[+ Ax.idg(f(x)) = Ax.f(x) [ Ax.f(x)=f
[Fidgof=Ff

n
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How we'll use MLTT



Blending with interpretations

Moving forward, we'll be more casual about interpretations, switching
between them as suits our purposes
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Informal Type Theory

The formal framework of contexts, type judgments, etc. can often be too
clunky and get in the way. So we’ll work in an style, e.g.

The context is usually implicit
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Informal Type Theory

The formal framework of contexts, type judgments, etc. can often be too
clunky and get in the way. So we’ll work in an style, e.g.

The context is usually implicit

“Let x be of type T" (and similar) means “x : T is in our context”
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Informal Type Theory

The formal framework of contexts, type judgments, etc. can often be too
clunky and get in the way. So we’ll work in an style, e.g.

The context is usually implicit
“Let x be of type T" (and similar) means “x : T is in our context”

“Assume T" means “Assume T is inhabited”
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Informal Type Theory

The formal framework of contexts, type judgments, etc. can often be too
clunky and get in the way. So we’ll work in an style, e.g.

The context is usually implicit
“Let x be of type T" (and similar) means “x : T is in our context”
“Assume T" means “Assume T is inhabited”

“Let X be a gadget” means “Let X be a term (of the appropriate
type) such that is_gadget(X) is inhabited”
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Informal Type Theory

The formal framework of contexts, type judgments, etc. can often be too
clunky and get in the way. So we’ll work in an style, e.g.

The context is usually implicit
“Let x be of type T" (and similar) means “x : T is in our context”
“Assume T" means “Assume T is inhabited”

“Let X be a gadget” means “Let X be a term (of the appropriate
type) such that is_gadget(X) is inhabited”

We'll have informal ways of reading (and using) the formal inference
rules we use to define our types
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Formalization

A key benefit of HoTT is its amenability to : even though

we usually work informally, our informal methods closely mirror our formal
rules so it's easily to “translate” into formal derivations.
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Formalization

A key benefit of HoTT is its amenability to : even though
we usually work informally, our informal methods closely mirror our formal
rules so it's easily to “translate” into formal derivations.

Interactice proof assistants (like Agda or Coq) allow us to write our
formal proofs in a computer-readable format, so the computer can check
our proofs and verify their correctness!
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Next Time. ..
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Next Time. ..

More discussion of type families
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Next Time. ..

More discussion of type families

Dependent Types & their interpretations
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Next Time. ..

More discussion of type families
Dependent Types & their interpretations

“Official” rules for 2, x, etc.
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Next Time. ..

54

More discussion of type families
Dependent Types & their interpretations
“Official” rules for 2, x, etc.

More types
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Thanks for watching!
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