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HoT T Workflows



Why HoTT?

What does Ho mean’
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How do we do HoT T7?

ooooooooooo



Written for humans, in
sentences and paragraphs
Primary way of doing
mathematics

Key innovation of the
HoTT /UF project:
developing informal type
theory

Informal # unrigorous
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e Written in a computer
proof assistant (e.g. Agda,
Coq, Lean)

e Correctness can be checked
automatically

e Central motivation for (C@MPUT]ER
HoTT: informal theory is ]F@RMA]L
amenable to formalization H@TT

in a computer proof
assistant
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e Written in the form of
inference rules, e.g.

[Ff:A—B [TTFx:A
[+ f(x):B

e Unwieldy as a formalization .
system, but often a C%C ;Z;
convenient for W
C

» precisely stating rules

» reasoning about metatheory %m

» figuring out how to formalize
In a computer
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How do we do HoTT7




1 Links in description! |
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Declare-It-Yourself
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1 is a type with exactly one term, x : 1

Programming Homotopy Logic
Type of Contractible Uniquely-witnessed
zero-tuples (single-point) space  true proposition
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Optional: Universe Levels

is a hierarchy of universes, parametrized by a type Level. Level is
basically the natural numbers: 1zero is level 0, 1suc is the successor operation,
and Ll is the maximum operator. So there are as many levels as there are
natural numbers.
We have an infinite hierarchy to avoid Russell-paradox-esque problems with
having a type of types. For each / : Level,

o (Type ¢) : Type (1lsuc /£)

so no type is a term of itself.

The universes are cumulative: if A : Type /¢, then A can also be viewed
as an element of Type /¢’ for every {':Level higher than /. So if we say A :

lzero, this means that A is a type at every level.
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00-preamble.agda

gmodule OO-preamble where

open import Agda.Primitive using (Level;
lzero; 1lsuc; _LI_) public

variable ¢ : Level

Type : (£ : Level) — Set (1lsuc ()
Type £ = Set /
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Judgments and Inference Rules

S S .. T
C

o It 1,7, ..., T, hold, C follows"
o 11,0, ..., T, and C are judgments

A type a:A

e Can be stacked atop each other to make deduction trees




1 Formation & Introduction

Formation Introduction

1 type %11
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Type definition checklist

e Formation Rule
» Assert the existence of the type
e Introduction Rule(s)
» Specify how to give terms of the type

e Elimination Rule
e Computation Rule(s)
e Coherence Rule(s)
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The Formation Rule and Introduction Rule are achieved in
Computer Formal HoTT (e.g. in Agda) by the type delcaration

This declares the type into existence (Formation) and declares how
to build terms of the type (Introduction)

20 Declare-It-Yourself / Intro to HOoTT, No. 2



2 ]. Declare-It-Yourself / Intro to HoTT, No. 2



A context is a finite list of typed variable names
x1:ALX A X, A

We use letters like [ and A to denote arbitrary contexts.

A judgment-in-context has the form

=7

where J might contain variables from I.
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1 Formation & Introduction

Formation Introduction

M- 1 type M1




Judgmental Equality



Judgmental Equality
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Judgmental Equality — Types & Terms

=T, =t T
T1 and 15 are t; and tp are
judgmentally equal ~ judgmentally equal
types terms of type T
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Judgmental Equality — Types & Terms

= Ti=1 [Ft=t:T

In context [, T{ and In context I, t; and t
T are judgmentally are judgmentally equal
equal types terms of type T
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Confluence

“HoT T is a programming language”
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Judgmental Equality



6+6 7+5
12
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e Compute to the same thing
> 6+6 = 7+5 .
e Equal by definition

» helloWord = "Hello"
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Judgmental Equality is an equivalence relation

A type a:A

A= A a=a: A
A= B a=4a: A
B = A a=a: A
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Judgmental Equality is an equivalence relation

[ - A type [Fa: A

T A= A [ Fa=a: A

[FA=B [Fa=a:A

[-B=A [-a =a: A
TEFA=-B TFB=C TFHa=4"A ITrad=3"A

- A= C [Fa=43": A
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Not-So-Casual Friday



nformal
floTIr

We define the type of days of the week to be a type day, equipped
with exactly seven terms

Sunday, Monday, ..., Saturday : day
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day type (day-Formation)

Sunday: day Monday: day (day-Introduction)

Tuesday: day Wednesday: day

Thursday: day Friday: day

Saturday: day
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For each d: day, we have
next(d):day and  prev(d): day
representing the next and previous day, respectively. For instance,

next(Tuesday) = Wednesday = prev(Thursday)
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d: day d: day
next(d): day prev(d): day

next(Sunday) = Monday: day next(Monday) = Tuesday: day next(Tuesday) = Wednesday: day

next(Wednesday) = Thursday: day next(Thursday) = Friday: day next(Friday) = Saturday: day

next(Saturday) = Sunday: day

next(d;) = d,: day
prev(d,) = d;: day
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day : lzero
Sunday Monday Tuesday Wednesday Thursday
Friday Saturday : day

day — day
Sunday = Monday
Monday = Tuesday
Tuesday = Wednesday
Wednesday = Thursday
Thursday = Friday

—— gurday

Intro to HoTT, No. 2



Calculation

next(next(next(Tuesday)))
= next(next(Wednesday))
= next(Thursday)

= Friday

= prev(Saturday)
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Summary: How to do HoTT

1 Think about what structure/behavior you want to describe
rigorously /mathematically

2 Write it up informally (or formally in a computer proof
assistant, or as inference rules)

3 Try (un)formalizing it into other styles of HoTT, to better
understand it & to check your work

4 Sharel
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Designed, written, and performed by
Jacob Neumann



Except where noted (see description for attributions), the contents
of this video are licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License
https://creativecommons.org/licenses/by-sa/4.0/



@ Intro-HoT T.video —-

O) @Intro HoT T —
¥ Qlntro HoTT

Homotopy Type Theory



Next video:

Coming soon!
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