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s: A t: A
ld(s, t) type
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|dentity types

s: A t: A
ld(s, t) type

e Encodes the proposition that s equals t as a type:

» aterm p: |d(s, t) is a witness or proof that s equals t
» if s does not equal t, this is represented by Id(s, t) being empty
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What if

we dropped
symmetry?




s: A t: A
Hom(s, t) type
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0 What is directed
equality?



s: A t: A
Hom(s, t) type
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s: A t: A
Hom(s, t) type

e Encodes the proposition that s becomes t
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Interpretation 0:



e |dentity types internalize metatheoretic equality; maybe
directed identity types should internalize metatheoretic
reduction
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e |dentity types internalize metatheoretic equality; maybe
directed identity types should internalize metatheoretic
reduction

e Failure of symmetry makes sense:

745~ 12 12 4 745

e Two ways identity could interact with directed identity
» Core/Right: Id(s, t) = Hom(s, t) x Hom(t, s)
» Free/Left: Id is the equivalence relation generated by Hom (this is the
same as Id(s, t) = dx.Hom(s, x) x Hom(t, x) if Hom is nice)
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Directed algebraic
topology




e Think of a type A as a space (in the sense of algebraic
topology); the terms s: A are the points of the space
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Directed algebraic topology
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Interpretation 2:



e Think of a type A as the state space of some computer
system, with terms s, t: A as the states
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state s and result in state ¢
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Holes are concurrency deadlocks

Suppose we have two resources X and Y that are being accessed
by concurrent threads. To avoid conflicts, a thread will lock a

resource while using it, and prevent other threads from locking it
(until unlocked).
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Holes are concurrency deadlocks

Suppose we have two resources X and Y that are being accessed
by concurrent threads. To avoid conflicts, a thread will lock a

resource while using it, and prevent other threads from locking it
(until unlocked).

Suppose we have two threads, running:
e :lock X; lock Y; unlock Y; unlock X
e O: lock Y; lock X; unlock X; unlock Y
Depending on how these are interleaved, we could have a deadlock
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Interpretation 3:



In directed type theory, each type A comes equipped with the
structure of a category
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Analytic vs. Synthetic

This is a synthetic category theory: any type we can write down
automatically has the structure of a category given by Hom.
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Prove the category laws (associativity of composition, identity
morphisms are units for composition) once and for all.
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Analytic vs. Synthetic

This is a synthetic category theory: any type we can write down
automatically has the structure of a category given by Hom.

Prove the category laws (associativity of composition, identity
morphisms are units for composition) once and for all.

Likewise, any function A — B is a synthetic functor: it
automatically has a morphism part

F: A— B p: Hom(s,t)

mapg p: Hom(F(s), F(t))

which preserves identity morphisms and composition.
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lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,
e every pair of parallel k-morphisms for kK > m are equal, and
e every k-morphism for k > n is invertible

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,
e every pair of parallel k-morphisms for kK > m are equal, and
e every k-morphism for k > n is invertible

E.g. categories=(1,1)-categories,

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,
e every pair of parallel k-morphisms for kK > m are equal, and
e every k-morphism for k > n is invertible

E.g. categories=(1,1)-categories, preorders=(0,1)-categories,

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,
e every pair of parallel k-morphisms for kK > m are equal, and
e every k-morphism for k > n is invertible
E.g. categories=(1,1)-categories, preorders=(0,1)-categories,
equivalence relations=(0,0)-categories,

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,

e every pair of parallel k-morphisms for kK > m are equal, and

e every k-morphism for k > n is invertible
E.g. categories=(1,1)-categories, preorders=(0,1)-categories,
equivalence relations=(0,0)-categories, groupoids=(1,0)-categories,

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,

e every pair of parallel k-morphisms for kK > m are equal, and

e every k-morphism for k > n is invertible
E.g. categories=(1,1)-categories, preorders=(0,1)-categories,
equivalence relations=(0,0)-categories, groupoids=(1,0)-categories,
2-categories=(2,1)-categories, ..

Jacob Neumann An Intro to Directed Equality 10 October 2025 15 /30



lterating hom types, e.g. Hom(p, p’) for p, p’: Hom(s, t), gives
higher-categorical structure.
In an (m, n)-category,

e every pair of parallel k-morphisms for kK > m are equal, and

e every k-morphism for k > n is invertible
E.g. categories=(1,1)-categories, preorders=(0,1)-categories,
equivalence relations=(0,0)-categories, groupoids=(1,0)-categories,
2-categories=(2,1)-categories, ..

If we're interested in (1,1)-category theory, then we can assert that
hom-types between two homs are invertible, i.e. are identity types.
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1 Designing a
directed type theory




How identity types are defined

[Fs: A
[+ refls: Id(s, s)
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Properties of equality

o Reflexivity asserted axiomatically:
t: A
refl,: 1d(t, t)
e Symmetry can be proved:
p: Id(s, t)
p~L:ld(t,s)
e Transitivity can be proved:
p:ld(s,t) q:Id(t, u)
p-q:ld(s, u)
e Congruence can be proved:
x: Al B(x) type p:ld(s,t) b: B(s)
trg p b: B(t)
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Symmetry and transitivity are proven

o refl™! = refl
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P-4 .= JMq(Sap) M(X7 V) — Hom(s,x)
(based at t)
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How do
we make transitivity
provable, but not
symmetry?




How identity types are defined

[Fs: A
[+ refls: Id(s, s)

[Fs: A
[, x: A v:Id(s,x) F M(x, v) type
[ = m: M(s, refly)
[x: Avild(s,x) = J m(x,v): M(x,v)

Jacob Neumann An Intro to Directed Equality 10 October 2025 19 /30



Annotating polarities
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[ Fs: A [FHt: A
[ - Hom(s, t) type

e Encodes the proposition that s becomes t
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Annotating polarities

Solves the issue: we know that p: Hom(s, t) can’t be turned into
p~1: Hom(t,s), because the type Hom(t, s) doesn't even make
sense!
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[ Fs: A
[ refl;: Hom(s, )
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Coercions between polarities

Want to allow a term s to be considered as either a term of type A

or A
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How hom types are defined

[ Fs: A
[ | refl;: Hom(s, —s)
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How hom types are defined

[ Fs: A”
[ I refls: Hom(s, —s)

[ Fs: A
[,x: A, v: Hom(s, x) F M(x, v) type
[ m: M(—s, refly)
[,x: A v: Hom(s,x) = J m (x,v): M(x, v)
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Fors,t: A=, u: A, p: Hom(s, —t), and g: Hom(¢t, u),
o p-refl=p
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Solution: split the context into two ‘zones': one ‘neutral’ and one

| A
~— '~

neutral polarized

‘polarized’:
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Solution: split the context into two ‘zones': one ‘neutral’ and one

| A
~— '~

neutral polarized

‘polarized’:

Coercion between polarities is only allowed if the term doesn't
depend on polarized variables
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Coercions between polarities

Want to allow a term s to be considered as either a term of type A

or A

[ =s: A [Et: A
[ - —s: A [ = —t: A — —if =
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Coercions between polarities

Want to allow a term s to be considered as either a term of type A
or A™, but only if the polarized context zone is empty

[ |eFs: A” [ ekt A

[ ek —s: A [ | e —t: A” ——t=t
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How hom types are defined

[ Fs: A”
[ I refls: Hom(s, —s)

[ s: A”
[,x: A v: Hom(s, x) - M(x, v) type
[ = m: M(—s, refly)
[,x: A v: Hom(s,x) = J m (x,v): M(x, v)
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Other topics

e Semantics
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Other topics

e Semantics
e Synthetic category theory
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Thank you!
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