
Synthetic-Inductive
Category Theory

Synthetic-Inductive
Category Theory

Jacob Neumann
University of Nottingham & Reykjavik University

TYPES 2025, Glasgow, Scotland
09 June 2025



This talk corresponds to [Neu25, Chapter 4],
draft available at

jacobneu.com/PhD

https://jacobneu.com/PhD


Martin Löf Type
Theory: Synthetic
groupoid theory



Synthetic groupoid structure of identity types

t : A
reflt : Id(t, t)
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Synthetic groupoid structure of identity types

p : Id(t, t ′)
q : Id(t ′, t ′′)

p · q : Id(t, t ′′)

p · q := JId(t,_) p (t ′′, q)
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Synthetic groupoid structure of identity types

p : Id(t, t ′)
p−1 : Id(t ′, t)

p−1 := JId(_,t) reflt (t ′, p)
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Directed TT:
Synthetic category

theory



Synthetic category structure of hom-types

t : A−

reflt : Hom(t,−t)

Jacob Neumann Synthetic-Inductive Category Theory 09 June 2025 2 / 16



Synthetic category structure of hom-types

p : Hom(t, t ′)
q : Hom(−t ′, t ′′)
p · q : Hom(t, t ′′)

p · q := JHom(t,_) p (t ′′, q)
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Synthetic category structure of hom-types

p : Hom(t, t ′)
p−1 : Hom(−t ′,−t)

p−1 := JHom(_,t) reflt (t ′, p)
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Problem of Directed
TT: Make symmetry

unprovable
Synthetic categories that aren’t (necessarily)

synthetic groupoids



Polarized and Directed type theory

We have polarity annotations on our types to mark co- or
contra-variance

∆ ` A type
∆ ` A− type ∆ ` (A−)− = A

Types are categories, A− is the opposite category of A

The polarity annotations allow us to properly state the variance of
hom-sets [Nor19]:

∆ ` t : A− ∆ ` t ′ : A
∆ ` Hom(t, t ′) type
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Closed term coercion

For closed terms, we can coerce between A and
A− [NA25, Neu25]:

t : A−

−t : A −− t = t
A category and its opposite have the same objects
Key Point Cannot (in general) negate open terms

x : A− ` −x : A
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Closed term coercion

For closed terms, we can coerce between A and
A− [NA25, Neu25]:

t : A−

−t : A −− t = t

The coercions make it possible to introduce refl:
t : A−

reflt : Hom(t,−t)
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Synthetic category structure of hom-types

t : A−

reflt : Hom(t,−t)
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Directed Path Induction

Coslice Path Induction

t : A−

x ′ : A, u : Hom(t, x ′) ` M(x ′, u) type
m : M(−t, reflt)

x ′ : A, u : Hom(t, x ′) ` J+M m (x ′, u) : M(x ′, u)

J+M m (−t, reflt) = m

reflt is the “universal coslice” under t
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This solves the
fundamental problem

of directed TT



Synthetic category structure of hom-types

p : Hom(t, t ′)
q : Hom(−t ′, t ′′)
p · q : Hom(t, t ′′)

x ′′ : A, u : Hom(−t ′, x ′′) `
J+Hom(t,x ′′) p (x ′′, u) : Hom(t, x ′′)
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Synthetic category structure of hom-types

p : Hom(t, t ′)
p−1 : Hom(−t ′,−t)

x ′ : A, u : Hom(t, x ′) `
J+ reflt (x ′, u) : Hom(−x ′,−t)
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Semantic Proof:
Symmetry can’t be
proved in general



Category theory is concerned with
universal mapping properties

Type-theoretic constructs are introduced with
principles of induction



Coproducts
A coproduct of s, t : A− consists of terms

• Q : A−

• ι1 : Hom(s,−Q) and
ι2 : Hom(t,−Q)

such that

x ′ : A, u : Hom(s, x ′), v : Hom(t, x ′) ` M type
m : M(−Q , ι1, ι2)

x ′, u, v ` elimM m (x ′, u, v) : M(x ′, u, v)

elimM m (−Q , ι1, ι2) = m
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Synthetic functors and natural transformations

A term F : A → B is a functor from A to B
• Define the identity functor on A, IA := λx .x .
• Given F : A → B and f : HomA(t, t ′), define

map F f : Hom(−F (−t), F (t ′)):
x ′ : A, u : HomA(t, x ′) ` J+ refl−F (−t) : Hom(−F (−t), F (x ′))

A term α : HomA→B(F ,G) is a natural transformation
By Coslice Path Induction, refl@t ′ := refl−((−F ) t ′) yields

F : (A → B)− G : A → B α : Hom(F ,G) t ′ : A
α@t ′ : Hom(−((−F ) t ′),G(t ′))
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Adjoints
A left adjoint of U : B → A consists of
• F : A → B
• η : Hom(−IA,U ◦ F )

such that

t : A−

z ′ : A, u : Hom(t,U(z ′)) ` M(z ′, u) type
m : M(F (−t), η @ (−t))

z ′ : A, u : Hom(t,U(z ′)) ` elimM m (z ′, u) : M(z ′, u)

elimM m (F (−t), η @ (−t)) = m
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Status

Apprehended
• Initial and Terminal Objects
• (Co)Products
• Pullbacks and Pushouts
• Left and Right Adjoints
• Applying a natural

transformation
• Definition of Yoneda

embedding
I Exponentials
I All limits of shape I

Still at large
• Lambda-abstraction rule for

natural transformations
I Proof by directed path

induction that natural
transformations are natural

I Internal proof of Yoneda
Lemma

I (Co)limits in presheaf
categories

• Monomorphisms/Epimor-
phisms (coinductive
characterization?)
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• Track polarities
• Limit coercions to closed terms
• Fail to prove symmetry
• Phrase universal mapping properties as principles of induction

Thank you!


