Dual-Context Directed Type Theory

for Synthetic (Co)-Inductive Category Theory

Jacob Neumann Reykjavik University

25 October 2025 CT Octoberfest 2025

A Judgmental Construction of Directed Type Theory [Neu25b] arxiv.org/abs/2510.17494

A Generalized Algebraic Theory of Directed Equality
[Neu25a]
jacobneu.phd

0/18

O Directed IT for Synthetic CT

Analytic-Synthetic Distinction: Geometry

Analytic

Given a point $c \in \mathbb{R} \times \mathbb{R}$ and r > 0, define

$$\{z \in \mathbb{R} \times \mathbb{R} \mid d(c,z) = r\}$$

Synthetic

There are things called points, lines, and circles.

Given any two (distinct) points a and b, a circle may be drawn centered at a which intersects b.

Idea: Synthetic Category Theory

Types are categories

A type

A is a category

s: A

s is an object of A

 $\frac{s: A \quad t: A}{\mathsf{Hom}(s, t) \ \mathsf{type}}$

there is a set of morphisms between every two objects s and t of A

$$F: A \rightarrow B$$
 $f: \operatorname{Hom}_A(s, t)$
 $\operatorname{map}_F f: \operatorname{Hom}_B(F(s), F(t))$

$$\frac{F \ G \colon A \to B \quad \alpha \colon \mathsf{Hom}_{A \to B}(F,G)}{\alpha @s \colon \mathsf{Hom}_{B}(F(s),G(s))}$$

Context dependency

In formal languages like type theory, we reason about *context* dependency

$$x_1: A_1, \ldots, x_n: A_n \vdash b(x_1, \ldots, x_n): B(x_1, \ldots, x_n)$$

If the types A_1, \ldots, A_n, B have the structure of *synthetic* categories, this dependence is (dependent) **functoriality**

$$x: A^-, z: A \vdash Hom(x, z)$$
 type

Hom depends *contravariantly* on *x*.

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A^{-} \text{ type}} \qquad \frac{\Gamma \vdash (A^{-})^{-} \equiv A}{\Gamma \vdash (A^{-})^{-} \equiv A}$$

Problem: Identity morphisms

Logicians have developed theories with multi-zoned contexts, where the variables are split into different zones with different kinds of dependency

$$y_1 :: A_1, \ldots, y_m :: A_m \mid x_1 :: B_1, \ldots, x_n :: B_n \vdash c :: C$$

In particular, [Shu18] is dealing with a type theory whose types are synthetic topological spaces. In the judgment above, the construction c: C has to be continuous with respect to the "cohesive" variables $x_i: B_i$, but not with respect to the "crisp" variables $y_i:: A_i$.

$$\frac{\Gamma \mid \bullet \vdash s : A^{-}}{\Gamma \mid \bullet \vdash \operatorname{refl}_{s} : \operatorname{Hom}(s, -s)}$$

Maintain the variables in two *context zones*: a groupoid **neutral zone** Γ and a category **polar zone** Δ

$$\Gamma \mid \Delta \vdash c : C$$

s must be functorial with respect to the polar variables x : A in Δ , but only functorial with respect to the *core groupoid* of the neutral variables y :: A in Γ .

Key point In a *neutral context*, one of the form $\Gamma \mid \bullet$, we can coerce between A and A^- :

$$\frac{\Gamma \mid \bullet \vdash s : A^{-}}{\Gamma \mid \bullet \vdash -s : A} \qquad \frac{\Gamma \mid \bullet \vdash t : A}{\Gamma \mid \bullet \vdash -t : A^{-}} \qquad \frac{--s \equiv s}{--t \equiv t}$$

Composition and transport

$$\frac{\Gamma \mid \bullet \vdash A \text{ type}}{\Gamma, y :: A \mid x : A^-, z : A, u : \text{Hom}(x, y), v : \text{Hom}(y, z) \vdash u \cdot v : \text{Hom}(x, z)}$$

$$\frac{\Gamma \mid z \colon A \vdash P(z) \text{ type } \Gamma \mid \bullet \vdash p_0 \colon P(-s)}{\Gamma \mid z \colon A, u \colon \text{Hom}(s, z) \vdash \text{tr}_P^+ u p_0 \colon P(z)}$$

$$\frac{\Gamma \mid x : A^- \vdash Q(x) \text{ type} \quad \Gamma \mid \bullet \vdash q_0 : Q(-t)}{\Gamma \mid x : A^-, v : \text{Hom}(x, t) \vdash \text{tr}_Q^- v \ q_0 : Q(x)}$$

Between any two parallel morphisms, we have the *identity type*, which is the proposition that they are equal, represented as a type:

$$\frac{\Gamma \mid \Delta \vdash f \colon \mathsf{Hom}(s,t) \quad \Gamma \mid \Delta \vdash f' \colon \mathsf{Hom}(s,t)}{\Gamma \mid \Delta \vdash \mathsf{Id}(f,f') \; \mathsf{type}}$$

(this is actually the Hom-type $Hom_{Hom(s,t)}(f,f')$, but we assert that $Hom_{Hom(s,t)}$ is an equivalence relation, not a general category). We can prove the category laws, e.g. that there's always a term of type

$$Id(f \cdot (g \cdot h), (f \cdot g) \cdot h).$$

1 Synthetic-(Co)Inductive Category Theory

Inductive Type Define A by constructors and an induction principle: in order to prove/construct something for all x: A, it suffices to do so just on the constructors.

E.g. \mathbb{N} with constructors zero and succ.

Coinductive Type Define A by destructors and a coinduction principle: for any bisimulation R (a relation which is preserved under destructors), if R(x,y) then x=y E.g. Stream(X) with destructors hd: Stream(X) $\to X$ and tl: Stream(X) \to Stream(X). A bisimulation is a relation R such that, for all x, y such that R(x, y),

$$hd(x) = hd(y)$$
 and $R(t|x, t|y)$.

Observation: Universal mapping properties are principles of induction

Example: Products

Work in an arbitrary neutral context $\Gamma \mid \bullet$. Given s, t : A, say that the data

$$P: A \qquad \pi_1: \operatorname{\mathsf{Hom}}(-P,s) \qquad \pi_2: \operatorname{\mathsf{Hom}}(-P,t)$$

is a **product** of *s* and *t* if it satisfies the following principle of induction

$$\Gamma \mid x \colon A^-, u \colon \mathsf{Hom}(x,s), v \colon \mathsf{Hom}(x,t) \vdash M(x,u,v) \mathsf{type}$$

$$\Gamma \mid \bullet \vdash m \colon M(-P,\pi_1,\pi_2)$$

 $\Gamma \mid x : A^-, u : \operatorname{Hom}(x, s), v : \operatorname{Hom}(x, t) \vdash \operatorname{elim} m(x, u, v) : M(x, u, v)$

Recovering the usual UMP

Get the induced morphism:

$$\Gamma \mid x, u, v \vdash \langle u, v \rangle := \text{elim refl}_P : \text{Hom}(x, -P)$$

the commutativity of the triangles:

$$\Gamma \mid x, u, v \vdash \text{elim refl}_P : \text{Id}(\langle u, v \rangle \cdot \pi_1, u)$$

and so on.

Developed in this style ([Neu25a, Chapter 4]):

- Products and coproducts
- Pullbacks and pushouts
- Right and left adjoints (exponentials, all (co)limits of a given shape)

Not included there, but also have worked out:

- Initial and terminal objects
- Equalizers and coequalizers

A **right adjoint** of $F: A \rightarrow B$ consists of

$$U\colon B\to A$$

$$\epsilon$$
: Hom $(-(F \circ U), I_B)$

such that

$$\Gamma, y :: B \mid x : A^-, u : Hom(F(x), y) \vdash M(y, x, u)$$
 type

$$\Gamma, y :: B \mid \bullet \vdash m : M(y, -U(y), \epsilon@y)$$

$$\Gamma, y :: B \mid x : A^-, u : Hom(F(x), y) \vdash elim \ m \ (y, x, u) : M(y, x, u)$$

What category-theoretic concepts are coinductive in nature?

Coinduction Any bisimulation (a relation that is preserved by the destructors) is contained within the diagonal relation (bisimilarity implies equality).

A morphism f: Hom(s, t) is a **monomorphism** if it satisfies the following coinduction principle

$$\frac{\Gamma \mid x \colon A^{-}, u \colon \mathsf{Hom}(z, -s), v \colon \mathsf{Hom}(z, -s) \vdash R(x, u, v) \mathsf{type}}{\Gamma \mid x, u, v, r \colon R(x, u, v) \vdash \mathsf{bisim}_{R}(r) \colon \mathsf{Id}(u \cdot f, v \cdot f)}{\Gamma \mid x, u, v, r \vdash \mathsf{coind}_{R} r \colon \mathsf{Id}(u, v)}$$

Future directions

- Better examples of coinductive concepts
- Relax polarity calculus to be able to write natural transformations componentwise
- Implement language, to allow for computer-formalized category theory

17 / 18

[Neu25a] Jacob Neumann.

A Generalized Algebraic Theory of Directed Equality.

PhD thesis, University of Nottingham, 2025.

[Neu25b] Jacob Neumann.

A judgmental construction of directed type theory, 2025.

[Shu18] Michael Shulman.
Brouwerś fixed-point theorem in real-cohesive homotopy type theory.

Mathematical Structures in Computer Science, 28(6):856–941, 2018.

Thank you!

arxiv.org/abs/2510.17494 jacobneu.phd