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Cool Structure: Exponentials

Given two sets B, C, | can form the set C® of all functions B — C. |
can define the function ¢: C® x B — C which sends (g, b) to g(b).
This satisfies the universal property of the exponential: for any

f: Ax B — C, there is a unique function f: A — CP such that

CBxB —5 C

7

AXx B

commutes.

What about instead of sets?
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Cool Structure: Exponentials

Given two B, C, | can form the set CB of all
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No!



Thm. The category Grp of groups and group homomorphisms is not a
cartesian closed category.

Lemma In a cartesian closed category C with an initial object 0, any
morphism C(A, 0) is an isomorphism.

Fact The trivial group 0 is both initial and terminal in the category of
groups. So any group G has a unique morphism C(G, 0).
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Grp doesn't
have exponentials



4 sn't

"4

M )

Be a lot cooler if you did




ldea: Make a better version of Grp that does have these things

The cooler Grp
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The category of presheaves

For any category C, define the category of
to be the category whose

Objects are functors C°P — Set
Morphisms are natural transformations.

There is a functor y: C — Psh(C) taking each object A of C to the
YA.

Thm (Yoneda) For any objects A, B of C, the morphism part of the y

functor gives an isomorphism

C(A, B) = (Psh(C))(yA,yB).
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The Yoneda Lemma: the fundamental lemma of category theory

Lemma (Yoneda) For any presheaf F: C°® — Set, there is an
iIsomorphism

F A= (Psh(C))(yA, F)

natural in A.

To define a presheaf F having a nice universal
property in Psh(C),
1 Assume you already have F
2 Apply the Yoneda Lemma
3 Rewrite using the desired universal property
2 Obtain what the definition must be
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Example 1: Products in Psh(C)

Claim Psh(C) has products: for any presheaves F, G, there is a
presheaf F X G such that

(Psh(C))(H, F x G) = (Psh(C))(H, F) x (Psh(C))(H, G)

naturally in H.
By Yoneda Reasoning:
(F x G)(A) = (Psh(C))(yA, F x G)
= (Psh(C))(yA, F) x (Psh(C))(yA, G)
=(FA)x (G A)
Now take , prove this has property
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Example 2: Exponentials in Psh(C)

Claim Psh(C) has exponentials: for any presheaves F, G, there is a
presheaf G© such that

(Psh(C))(H, G") = (Psh(C))(H x F, G)

naturally in H.
By Yoneda Reasoning:
(G")(A) = (Psh(C))(yA, G")
= (Psh(C))(yA x F, G)
Now take , prove this has property
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Is there Yoneda
machinery for verifying the
definition correct?



Yes!



Already have it for representables

Want:
(Psh(C))(H, G") = (Psh(C))(H x F, G)
Have it when H = yA:
(Psh(C))(yA, G") = G"(A) := (Psh(C))(yA x F, G)
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If it holds for all

representables, it holds for
all presheaves



The Co-Yoneda Lemma

Lemma Every presheaf H is the colimit of representable presheaves:

H= colim yA
(Aa): [H
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GHIONGESEIGEE) <(Af3I:iTHyA, GF>

( Aﬁ!j)r:n f (Psh(C))(yA. G)

im (Psh(C))(yAx F, G
Llim(Psh(C))(yA x F. G)

Psh(C colim yAx F, G
(Psh(C) ( colim yAx F.G)

(Psh(C)) (((Acfg)l:ir}]HyA> « F. G>
(Psh(C))(H x F, G)
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Summary

Presheaf categories rich, other categories poor
Yoneda tells you what your definitions should

be

CoYoneda helps vouch for the answer Yoneda
gives
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Thank you!



