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Poset Enrichment

Rel(R,R) =[] [(Rxy)— (R xy)

xX yY
Note this is a proposition, which we'll write as R < R’.
(Ax.Ay.Ap.p) : R<R
(AxAy. (@ xy)o(nxy)) : R<R'" (n:R<R,0:R <R"

This partial order is compatible with composition:

S<S = (SoR)<(S'¢oR)
R<R — (SoR)<(S¢R)
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Structure on the posets

Classical allegory theory focuses on binary meets on these posets:
RAR =Xy (Rxy)x (R xy)

But for Rel, we can do meets (and joins) indexed over arbitrary sets:

/\ Ri = Ax.\y. H R xy
il il
\/ Ri = Ax.\y. Z R, xy
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Turning things around

(=)' : Rel(X, Y) = Rel(Y, X)

R'yx =Rxy
This is definitionally an involution:
(RT)T xy =R'yx =Rxy
and respects the poset structure:
RI<R, < R/ <Rl
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Allegories are the abstract definition of this
structure: a category enriched over posets with
binary meets that is equipped with a involution

operator, and satisfies certain laws.
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Rel(X,Y) = X = Y — Prop

Corr(X,Y) = X — Y — Set
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e For R, R": Corr(X, Y),

Corr(R,R'Y= (R = R') = HH(R xy)— (R xy)
xX yY

Idpr = AX.Ay. Ap.p
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arsr:(ToS)oR = To(SoR)
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wW z:Z
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w - x>,y _T,7

arsr:(ToS)oR = To(SoR)
arsr: [[[(((ToS)oR)wz) = ((To(SoR)) w2)
w:W z:.Z

XT SR = )‘W°)‘Z°)‘(X7 (wa, (yv (prv p)/Z))))'(Y7 ((Xv (pwxa ny))7 pyz))
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Given R, R": Corr(X,Y), n: R= R/,
5,5 :Corr(Y,Z)and ¢ : S = S,

'QD 4R = ()\X)\Z)\(y, (Pny, pySz))°(.y7 (Pnya ¢ y z p}’SZ)))

:HH((SOR)XZ)—)((S/OR)XZ)

x:X z/Z

:(SOR):>(S,OR)
Son = (AxAzZAy, (Pxry, Pysz))-(V, (1 X Y Pxrys Pysz)))

:HH((SOR)XZ)—)((SOR/)XZ)

x:X z/

- (SoR)= (So R
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(ToS)oR)oQ

V W

(To(SoR))o@ (ToS)o(RoQ)
QT SoR,Q QT .S RoQ
To((SoR)oQ) F To(S0(RoQ)
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Given any v : V, z: Z and any
(W, (Puw; (X, (Pwx; (¥, (P> Py2)))))) = (((ToS)oR)oQ) vz

O‘T,S,ROQ(@TOS,R,Q(Wa (va; (Xv (wa, (Y7 (pr7 pyz)))))))

= a7.5,RQ(X; (W, (Pw, Pwx)); (V5 (Pxy» Py2))))

(5 (06, (W, (Puws Pux))s Pry))s Pyz))

( Q)W (W, (Puws (X, (Puxs Pxy)))); Pyz))

(T > asre)arsere(w, (Puw, (y ((; (Puxs Pxy))s Py2)))))

( Q)larserol(arsr @ QYW, (P (X, (Pux, (¥ (Prys Pyz))
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Maps in allegory theory

In classical, set-theoretic mathematics, functions are defined as binary

relations which are single-valued and total.
We can mimic this: given R : ReI(X Y) and x : X, define

img(x Zny

then a map is a relation with contractlble iImages:

is map(R) = H is_contr(img(x))

x: X
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It X and Y are sets,
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It X and Y are sets,
(X —=Y) ~ Z is map(R)

R:Rel(X,Y)




Can we make something like
this work for
correspondences?



Simplicity and Entirety

Consider the following for R : Rel(X, Y)
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Simplicity and Entirety
Consider the following for R : Rel(X, Y)
is simple(R) = H is_prop(img(x))

is_entire(R) = H [img(x)||

is_simple(R) « (Ro R <idy)
is_entire(R) < (idx < RTo R)
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Corr(R o R',idy) and
Corr(idx, R' o R) give us
data about the simplicity

and entirety of R



HCorr(R o RT. idy)H X HCorr(idX, R' o R)H ~ H is_contr (Z IR x y||
x: X y:Y




Correspondence Adjunctions

Correspondences F : Corr(X, Y) and G : Corr(Y, X) are said
to constitute an adjunction if there are
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Correspondence Adjunctions

Correspondences F : Corr(X, Y) and G : Corr(Y, X) are said
to constitute an adjunction if there are

e : Corr(F o G,idy) and 7 : Corr(idx, G o F)
such that

idr = (e<F)o (F>n)
id¢ = (G>n)o(e<G)

Write F - G for the type of witnesses to this adjunction.
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For R : Corr(X, Y), the following are equivalent:

[Txis contr (3, IR x y||)
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For R : Corr(X, Y), the following are equivalent:

[Txis contr (3, IR x y||)
Corr(R o RT,idy)|| x ||Corr(idx, R" o R)|
IR Ri|

We can drop some of the ||—||’s.
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Dualize all this with f



For R : Rel(X,Y) and y : Y, define

fibr(y Zny
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For R : Rel(X,Y) and y : Y, define

fibr(y Zny

then

is_.comap(R) = H is_contr(fibg(y))
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Cosimplicity and Coentirety

is_cosimple(R) = H is_prop(fibr(y))

is_coentire(R) = H [fibr(y)||

is_cosimple(R) < (idy < Ro R
is coentire(R) <> (RTo R < idy)
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@6 [Sedtl¢} For sets X, Y,
(X ~Y)
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@6 [Sedtl¢} For sets X, Y,

(X =2 Y)~ Z is map(R) X is comap(R)
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@6 [Sedtl¢} For sets X, Y,

(X =2 Y)~ Z is map(R) X is_ comap(R)
R:Rel(X,Y)

CNIEED[Y For R : Corr(X, Y), the following are equivalent
L,y is contr (S,.x IR x vl
Corr(idy, R o RT)|| x ||Corr(RT o R, idx)|
R R
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3 Connections & Future
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