GAT Signature Languages

A Begriffsschrift for Concrete Structures

Jacob Neumann University of Nottingham ASSUME - February 2025

Riddle:

How old is Jacob if he's six years older than thrice his age twenty years ago?

Calculemus!

$$x - 6 = 3(x - 20)$$

$$x - 6 = 3x - 60$$

$$x + 54 = 3x$$

$$54 = 2x$$

$$27 = x$$

Arithmetic write the problem in the appropriate notation (i.e. equation(s) with unknowns as variable(s)), and *calculate* your answer by applying formulaic rules.

Calculemus!

Arithmetic write the problem in the appropriate notation (i.e. equation(s) with unknowns as variable(s)), and *calculate* your answer by applying formulaic rules.

- The true power of the *calculus* is that it can be *calculated with*.
- Calculus write the problem in the appropriate notation (\int, d) , and *calculate* your answer by applying formulaic rules (e.g. chain rule, (anti)derivatives of polynomials).

Characteristica Universalis and Begriffsschrift

- What if everything could be studied in this way?
- Science/Logic/Metaphysics write down the problem in the appropriate notation (*characteristica universalis*), and calculate your answer by applying formulaic rules (*calculus ratiocinator*).

Though expressing some skepticism about Leibniz's dream, Frege's 1879 *Begriffsschrift* partially achieved it, introducing a logic capable of expressing & reasoning about core mathematical objects.

(concept/idea/notion) + (writing/script(ure))

data IN: Set where

zero: N

 $succ: \mathbb{N} \to \mathbb{N}$

(*N* : Set)

 \times (z: N)

 \times (s: $N \rightarrow N$)

 $(f: N \rightarrow N')$

(f(z)=z')

 \times $((n: N) \rightarrow s'(f n) = f(s n))$

 $(\mathsf{elim} \colon (n \colon \mathbb{N}) \to P(n))$

 $(elim(zero) = p_{zero})$

 $((n\colon \mathbb{N}) o \mathsf{elim}(\mathsf{succ}\; n) = p_{\mathsf{succ}}$

 $(P \colon \mathcal{N} o \mathsf{Set})$

 \times ($p_{\sf zero}$: $P(\sf zero)$

 $imes (p_{\mathsf{succ}} \colon (n \colon \mathbb{N}) o P(n) o P(\mathsf{succ}\ n))$

GATs are a concept-script

- Generalized Algebraic Theories provide a framework for writing down Begriffe like this
- Generalized Algebra write down the concept in the appropriate notation (as a GAT), and calculate out how it manifests (as mathematical structures, morphisms, predicates, etc.) by applying formulaic rules
- Not all mathematical structures are GATs, but many of the key ones are
- See the power of generalized algebra in its capacity for self-reflection

Outline

- O Specifying structures as GATs
- 1 GenAlg "folding in on itself", Part I: The GAT signature language
- 2 GenAlg "folding in on itself", Part II: Concrete CwFs
- 3 GenAlg "folding in on itself", Part III: Fibrancy and Autosynthesis

O Specifying structures as GATs

"As you know, my honourable colleague Mac Lane supports the idea that every structural notion necessarily comes equipped with a notion of homomorphism...What on earth does he hope to deduce from this kind of considerations?"

Andre Weil, in a letter to Claude Chevalley

"Frightened by the disorder of the discussions, some members had brought a world-renowned efficiency expert from Chicago. This one, armed with a hammer, tried hard and with good humor, but without much result. He quickly realized that it was useless, and turned, successfully this time, to photography."

- *La Tribu* 34 (1954)

Effrayós du désordre des discussions, certains membres avaient fait venir de Chicago un "efficiency expert" de renommée mondiale. Celui-ci, armó d'un marteau, s'óvertua avec bonne humeur mais sans grand résultat. Il comprit vite que c'était inutile, et se tourna, avec succès cette fois, vers la photographie.

"As you know, my honourable colleague Mac Lane supports the idea that *every structural notion necessarily comes equipped with a notion of homomorphism*...What on earth does he hope to deduce from this kind of considerations?"

Andre Weil, in a letter to Claude Chevalley

Central Dogma of Category Theory

Every notion of "structure" comes equipped with a notion of "structure-preserving morphism"

Nat GATs

```
def M : GAT := {[
    Nat : U,
    zero : Nat,
    succ : Nat ⇒ Nat
}
```

```
\mathfrak{N} - Alg =
      (N: Set)
  \times (z: N)
  \times (s: N \rightarrow N)
(N,z,s) \rightarrow (N',z',s') =
      (f: N \rightarrow N')
  \times (f(z) = z')
  \times ((n: N) \rightarrow s'(f n) = f(s n))
```

Even/Odd

```
def €D : GAT := {
    Even : U,
    Odd : U,
    zero : Even,
    succ : Even ⇒ Odd,
    succ' : Odd ⇒ Even
}
```

```
\mathfrak{E}\mathfrak{O} - \mathsf{Alg} =
      (E : Set)
  \times (O: Set)
  \times (z: E)
  \times (s: E \rightarrow O)
  \times (s': O \rightarrow E)
(E, O, z, s, s') \rightarrow (F, P, y, q, q') =
      (f: E \rightarrow F)
  \times (g: O \rightarrow P)
  \times (f(z) = y)
  \times ((e: E) \rightarrow q(f e) = g(s e))
  \times ((o: O) \rightarrow q'(g o) = f(s' o))
```

Reflexive Quivers

```
rQuiv - Alg =
       (V : Set)
  \times (E: V \rightarrow V \rightarrow \mathsf{Set})
  \times ((v: V) \rightarrow E(v, v))
(V, E, r) \rightarrow (V', E', r') =
      (F_0\colon V\colon V\to V')
  \times (F_1: (v_0 \ v_1: \ V) \rightarrow E(v_0, v_1) \rightarrow
       E'(f(v_0), f(v_1))
  \times ((v: V) \rightarrow r'(F_0 \ v) = F_1(r \ v))
```

Algebraic structures

```
def Grp : GAT := {
           : U,
     M
               : M,
      u
     m : M \Rightarrow M \Rightarrow M,
     lunit : (x : M) \Rightarrow m u x \equiv x,
      runit : (x : M) \Rightarrow m \times u \equiv x,
      assoc : (x : M) \Rightarrow (y : M) \Rightarrow (z : M) \Rightarrow
                 m \times (m y z) \equiv m (m \times y) z,
      inv : M \Rightarrow M,
      linv : (x : M) \Rightarrow m (inv x) x \equiv u,
     rinv : (x : M) \Rightarrow m x (inv x) \equiv u
}
```

Preserve number of components, even when we don't have to

```
(M, u, \mu, \_, \_, i, \_, \_) \rightarrow (N, v, \nu, \_, \_, \_, j, \_, \_) = 0
       (\varphi \colon M \to N)
  \times (\varphi(u) = v)
  \times ((m_0 m_1: M) \rightarrow \nu(\varphi(m_0), \varphi(m_1)) = \varphi(\mu(m_0, m_1)))
  \times T
  \times T
  \times T
  \times ((m: M) \rightarrow j(\varphi m) = \varphi(i m))
  \times \top
  \times T
```

And so on...

```
\begin{array}{l} \text{def } \mathfrak{PreDrd} : \text{GAT } := \{ \{ \\ \text{X } : \text{U}, \\ \text{leq } : \text{X } \Rightarrow \text{X } \Rightarrow \text{U}, \\ \text{leq-prop } : \{ \text{x } \text{x'} : \text{X} \} \Rightarrow \{ \text{p } \text{q } : \text{leq } \text{x } \text{x'} \} \Rightarrow \text{p } \equiv \text{q}, \\ \text{rfl } : (\text{x } : \text{X}) \Rightarrow \text{leq } \text{x } \text{x} \\ \text{trns } : \{ \text{x } \text{y } \text{z } : \text{X} \} \Rightarrow \text{leq } \text{x } \text{y } \Rightarrow \text{leq } \text{y } \text{z } \Rightarrow \text{leq } \text{x } \text{z} \\ \} \end{array}
```

And so on...

```
def \mathfrak{Setoid}: \mathsf{GAT}:=\{[\ X: \ \mathsf{U}, \ \mathsf{eq}: X \Rightarrow X \Rightarrow \ \mathsf{U}, \ \mathsf{eq-prop}: \{x\ x': X\} \Rightarrow \{p\ q: \mathsf{eq}\ x\ x'\} \Rightarrow p \equiv q, \ \mathsf{rfl}: (x: X) \Rightarrow \mathsf{eq}\ x\ x \ \mathsf{trns}: \{x\ y\ z: X\} \Rightarrow \mathsf{eq}\ x\ y \Rightarrow \mathsf{eq}\ y\ z \Rightarrow \mathsf{eq}\ x\ z \ \mathsf{sym}: \{x\ y: X\} \Rightarrow \mathsf{eq}\ x\ y \Rightarrow \mathsf{eq}\ y\ x \ \}
```

And so on...

```
def Cat := {
      Obj: U,
      Hom : Obj \Rightarrow Obj \Rightarrow U
      id : (X : Obj) \Rightarrow Hom X X,
      comp : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow \{Z : Obj\} \Rightarrow
                  Hom Y Z \Rightarrow Hom X Y \Rightarrow Hom X Z,
      lunit : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow (f : Hom X Y) \Rightarrow
                  comp (id Y) f \equiv f,
      runit : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow (f : Hom X Y) \Rightarrow
                  comp f (id X) \equiv f,
      assoc : \{W:Obj\} \Rightarrow \{X:Obj\} \Rightarrow \{Y:Obj\} \Rightarrow \{Z:Obj\} \Rightarrow
                   (e : Hom W X) \Rightarrow (f : Hom X Y) \Rightarrow
                   (g : Hom Y Z) \Rightarrow
                  comp g (comp f e) \equiv comp (comp g f) e
```

```
def Grpd := {
      Obj: U,
      Hom : Obj \Rightarrow Obj \Rightarrow U
      id : (X : Obj) \Rightarrow Hom X X,
      comp : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow \{Z : Obj\} \Rightarrow
                  Hom Y Z \Rightarrow Hom X Y \Rightarrow Hom X Z,
      lunit : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow (f : Hom X Y) \Rightarrow
                  comp (id Y) f \equiv f,
      runit : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow (f : Hom X Y) \Rightarrow
                  comp f (id X) \equiv f,
      assoc : \{W:Obj\} \Rightarrow \{X:Obj\} \Rightarrow \{Y:Obj\} \Rightarrow \{Z:Obj\} \Rightarrow
                   (e : Hom W X) \Rightarrow (f : Hom X Y) \Rightarrow
                   (g : Hom Y Z) \Rightarrow
                  comp g (comp f e) \equiv comp (comp g f) e,
      inv : (X:Obj) \Rightarrow (Y:Obj) \Rightarrow Mor X Y \Rightarrow Mor Y X,
      linv : \{X : Obj\} \Rightarrow \{Y : Obj\} \Rightarrow (f : Hom X Y) \Rightarrow
                  comp (inv f) f \equiv id X,
                  (V \cdot Ohi) \rightarrow (V \cdot Ohi)
                                                       \sim (f · Hom V V)
```

Not allowed!

- X Functions with large domain:
 - $X U \Rightarrow U$
 - $X (A \Rightarrow B) \Rightarrow C$
- X Sort equations (NB: Cartmell allows them)

$$X \equiv Y$$

where X, Y: U.

Why we make these restrictions

Theorem (Kaposi-Kovács-Altenkirch, '19) Every GAT has an initial algebra.

Proof Konzept:

• Understand the GAT as a context, and consider terms-in-context:

```
{\{Nat: U, zero: Nat, succ: Nat \Rightarrow Nat\}} \vdash t: Nat
```

- Construct the initial algebra as the "term model": the set interpreting Nat is the set of terms of type Nat, the interpretation of zero is itself, etc.
- Prove initiality.

```
\operatorname{def} \, \mathfrak{CwF} := \{ \}
                                                                                                                                                    Con : U,
                                                                                                                                                        Sub : Con \Rightarrow Con \Rightarrow U,
                                                                                                                                                        id : \{\Gamma : Con\} \Rightarrow Sub \Gamma \Gamma,
                                                                                                                                                      comp : \{\Theta : Con\} \Rightarrow \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow \{\Pi : Con\}
                                                                                                                                                                                                                                                                                                                   Sub \Delta \Gamma \Rightarrow \text{Sub } \Theta \Delta \Rightarrow \text{Sub } \Theta \Gamma,
                                                                                                                                                      lunit : \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow \{\gamma : Sub \Delta \Gamma\} \Rightarrow \{\gamma : Sub \Delta \Gamma
                                                                                                                                                                                                                                                                                                                comp (id \Gamma) \gamma \equiv \gamma,
                                                                                                                                                      runit : \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow \{\gamma : Sub \Delta \Gamma\} \Rightarrow \{\gamma : Sub \Delta \Gamma
                                                                                                                                                                                                                                                                                                              comp \gamma (id \Delta) \equiv \gamma,
                                                                                                                                                      assoc : \{\Xi : Con\} \Rightarrow \{\Theta : Con\} \Rightarrow
                                                                                                                                                                                                                                                                                                                     \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow
                                                                                                                                                                                                                                                                                                                   (\vartheta : \operatorname{Sub} \Xi \Theta) \Rightarrow (\delta : \operatorname{Sub} \Theta \Delta) \Rightarrow
                                                                                                                                                                                                                                                                                                                   (\gamma : Sub \Delta \Gamma) \Rightarrow
                                                                                                                                                                                                                                                                                                                comp \gamma (comp \vartheta \delta) \equiv comp (comp \delta \gamma) \vartheta,
```

```
empty : Con,
 \varepsilon : (\Gamma : Con) \Rightarrow Sub \Gamma empty,
\eta \varepsilon : \{ \Gamma : \text{Con} \} \Rightarrow (f : \text{Sub } \Gamma \text{ empty}) \Rightarrow f \equiv (\varepsilon \Gamma),
Ty : Con \Rightarrow U,
 substTy : \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow
                                                       Sub \Delta \Gamma \Rightarrow Ty \Gamma \Rightarrow Ty \Delta,
 idTy : {\Gamma : Con} \Rightarrow (A : Ty \Gamma) \Rightarrow
                                                       substTy (id \Gamma) A \equiv A,
 compTy : \{\Theta : Con\} \Rightarrow \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow \{A : Co
                                                       (A : Ty \Gamma) \Rightarrow (\delta : Sub \Theta \Delta) \Rightarrow (\gamma : Sub \Delta \Gamma) \Rightarrow
                                                       substTy \gamma (substTy \delta A) \equiv substTy (comp \gamma \delta) A,
```

```
Tm : (\Gamma : Con) \Rightarrow Ty \Gamma \Rightarrow U
substTm : {\Delta : Con} \Rightarrow {\Gamma : Con} \Rightarrow {A : Ty \Gamma} \Rightarrow
                                                       (\gamma : \text{Sub } \Delta \Gamma) \Rightarrow \text{Tm } \Gamma A \Rightarrow
                                                       Tm \Delta (substTy \gamma A),
idTm : {\Gamma : Con} \Rightarrow {A : Ty \Gamma} \Rightarrow (t : Tm \Gamma A) \Rightarrow
                                                        substTm (id \Gamma) t = t,
compTm : \{\Theta : Con\} \Rightarrow \{\Delta : Con\} \Rightarrow \{\Gamma : Con\} \Rightarrow \{\Pi : Co
                                                          \{A : Ty \Gamma\} \Rightarrow (t : Tm \Gamma A) \Rightarrow
                                                         (\delta : \operatorname{Sub} \Theta \Delta) \Rightarrow (\gamma : \operatorname{Sub} \Delta \Gamma) \Rightarrow
                                                        substTm \gamma (substTm \delta t)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              \#\langle compTy A \gamma \delta \rangle
                                                        \equiv substTm (comp \gamma \delta) t,
```

```
ext : (\Gamma : \text{Con}) \Rightarrow \text{Ty } \Gamma \Rightarrow \text{Con},

pair : \{\Delta : \text{Con}\} \Rightarrow \{\Gamma : \text{Con}\} \Rightarrow \{A : \text{Ty } \Gamma\} \Rightarrow

(\gamma : \text{Sub } \Delta \Gamma) \Rightarrow \text{Tm } \Delta \text{ (substTy } \gamma \text{ A)} \Rightarrow

Sub \Delta \text{ (ext } \Gamma \text{ A)},

pair_nat: \{\Theta : \text{Con}\} \Rightarrow \{\Delta : \text{Con}\} \Rightarrow \{\Gamma : \text{Con}\} \Rightarrow

\{A : \text{Ty } \Gamma\} \Rightarrow (\gamma : \text{Sub } \Delta \Gamma) \Rightarrow

(\text{t : Tm } \Delta \text{ (substTy } \gamma \text{ A)}) \Rightarrow (\delta : \text{Sub } \Theta \Delta) \Rightarrow

comp (pair \gamma t) \delta

\equiv \text{pair (comp } \gamma \delta) \text{ (substTm } \delta \text{ t } \#\langle \text{compTy A } \gamma \delta \rangle),
```

```
p : \{\Gamma : Con\} \Rightarrow (A : Ty \Gamma) \Rightarrow Sub (ext \Gamma A) \Gamma,
v : \{\Gamma : Con\} \Rightarrow (A : Ty \Gamma) \Rightarrow
         Tm (ext \Gamma A) (substTy (p A) A),
\operatorname{ext}_{\beta_1} : \{\Delta : \operatorname{Con}\} \Rightarrow \{\Gamma : \operatorname{Con}\} \Rightarrow \{A : \operatorname{Ty} \Gamma\} \Rightarrow
          (\gamma : \text{Sub } \Delta \Gamma) \Rightarrow (\mathsf{t} : \text{Tm } \Delta (\text{substTy } \gamma A)) \Rightarrow
         comp (p A) (pair \gamma t) \equiv \gamma,
\operatorname{ext}_{\beta_2}: \{\Delta : \operatorname{Con}\} \Rightarrow \{\Gamma : \operatorname{Con}\} \Rightarrow \{A : \operatorname{Ty} \Gamma\} \Rightarrow
          (\gamma : \text{Sub } \Delta \Gamma) \Rightarrow (\mathsf{t} : \text{Tm } \Delta (\text{substTy } \gamma A)) \Rightarrow
         substTm (pair \gamma t) (v A)
                            #\langle compTy A (p A) (pair \gamma t); ext_{\beta_1} \gamma t \rangle
         \equiv t,
\operatorname{ext}_{\eta} : (\Gamma : \operatorname{Con}) \Rightarrow (A : \operatorname{Ty} \Gamma) \Rightarrow
         pair (p \Gamma A) (v \Gamma A) \equiv id (ext \Gamma A)
```

Idea: Every GAT extension of the GAT of CwFs has an initial algebra

1 The GAT signature language

Idea: Make the above constructions precise

- (Quotient inductive-) Inductively define the type of GATs
- Compile the above syntax down to the precise type
- Make definitions (like algebra and homomorphism)

CwF structure

Contexts (GATs)

$$\diamond \colon \overline{\mathsf{Con}} \qquad \underline{\hspace{0.5cm}} \rhd \underline{\hspace{0.5cm}} \colon (\mathfrak{G} \colon \overline{\mathsf{Con}}) \to \overline{\mathsf{Ty}} \; \mathfrak{G} \to \overline{\mathsf{Con}}$$

Variables & Substitution

wk:
$$\overline{\mathsf{Sub}} \; (\mathfrak{G} \rhd \mathcal{X}) \; \mathfrak{G}$$

0:
$$\overline{\mathsf{Tm}}(\mathfrak{G} \rhd \mathcal{X}, \mathcal{X}[\mathsf{wk}]\mathsf{T}) \qquad n+1 := n[\mathsf{wk}]\mathsf{t}$$

Universe of Sorts

EI:
$$\overline{\mathsf{Tm}}(\mathfrak{G},\mathsf{U}) \to \overline{\mathsf{Ty}}\;\mathfrak{G}$$

Pi-types with small domain

$$\Pi \colon (\mathcal{A} \colon \overline{\mathsf{Tm}}(\mathfrak{G},\mathsf{U})) \to \overline{\mathsf{Ty}}(\mathfrak{G} \rhd \mathsf{El}\; \mathcal{A}) \to \overline{\mathsf{Ty}}\; \mathfrak{G}$$

$$\underline{\quad} @\underline{\quad} : \overline{\mathsf{Tm}}(\mathfrak{G}, \Pi(\mathcal{A}, \mathcal{B})) \to (a \colon \overline{\mathsf{Tm}}(\mathfrak{G}, \mathsf{El}\; \mathcal{A})) \to \overline{\mathsf{Tm}}(\mathfrak{G}, \mathcal{B}[\mathsf{id}, a]\mathsf{T})$$

Note: No need for λ -abstraction!

Example: Nat

```
def M : GAT := {[
    Nat : U,
    zero : Nat,
    succ : Nat ⇒ Nat
}
```

```
    U
    D U
    D El 0
    D Π 1 (El 2)
```

Example: Even-Odd

```
def €D : GAT := {
    Even : U,
    Odd : U,
    zero : Even,
    succ : Even ⇒ Odd,
    succ' : Odd ⇒ Even
}
```

```
\triangleright U
\triangleright U

    El 1

□ 1 (El 2)

□ 1 2 (EI 4)
```

Extensional Identity Types

$$\mathsf{Eq} \colon \{\mathcal{A} \colon \overline{\mathsf{Tm}}(\mathfrak{G},\mathsf{U})\} \to \overline{\mathsf{Tm}}(\mathfrak{G},\mathsf{El}\,\mathcal{A}) \to \overline{\mathsf{Tm}}(\mathfrak{G},\mathsf{El}\,\mathcal{A}) \to \overline{\mathsf{Ty}}\,\mathfrak{G}$$

(get transport from metatheory by reflection)

GAT machine code

```
    U
    El 0
    Π 1 (Π 2 (El 3))
    Π 2 (Eq (1 @ 2 @ 0) 0)
    Π 3 (Eq (2 @ 0 @ 3) 0)
    Π 4 (Π 5 (Π 6 (Eq (5 @ 2 @ (5 @ 1 @ 0))) (5 @ (5 @ 2 @ 1) @ 0))))
```

```
    ↓ U
    ▷ Π 0 (Π 1 U)
    ▷ Π 1 (Π 2 (Π (2 @ 1 @ 0) (Π (3 @ 2 @ 1) (Eq 1 0))))
    ▷ Π 2 (El (2 @ 0 @ 0))
    ▷ Π 3 (Π 4 (Π 5 (Π (5 @ 2 @ 1) (Π (6 @ 2 @ 1) (El (7 @ 4 @ 2))))))
```

```
\Diamond
\triangleright U
\triangleright \Pi 0 (\Pi 1 U)
\triangleright \Pi 1 (El (1 @ 0 @ 0))
\triangleright \Pi 2 (\Pi 3 (\Pi 4 (\Pi (4 @ 1 @ 0) (\Pi (5 @ 3 @ 2) (El (6 @ 4 @ 2)))))))
\triangleright \Pi 3 (\Pi 4 (\Pi (4 @ 1 @ 0) (Eq (3 @ 2 @ 1 @ 1 @ (4 @ 1) @ 0) 0)))
\triangleright \Pi 4 (\Pi 5 (\Pi (5 @ 1 @ 0) (Eq (4 @ 2 @ 2 @ 1 @ 0 @ (5 @ 2)) 0)))
\triangleright \Pi 5 (\Pi 6 (\Pi 7 (\Pi 8 (\Pi (8 @ 3 @ 2) (\Pi (9 @ 3 @ 2) (\Pi (10 @ 3 @ 2)
   (Eq (9 @ 6 @ 5 @ 3 @ 0 @ (9 @ 6 @ 5 @ 4 @ 1 @ 2))
      (9 @ 6 @ 4 @ 3 @ (9 @ 5 @ 4 @ 3 @ 0 @ 1) @ 2)
   ))))))))
```

```
\triangleright El 6
\triangleright \Pi 7 (EI (7 @ 0 @ 1))
\triangleright \Pi 8 (\Pi (8 @ 0 @ 2) (Eq 0 (2 @ 1)))

□ Π 9 U

\triangleright \Pi 10 (\Pi 11 (\Pi (11 @ 1 @ 0) (\Pi (3 @ 1) (El (4 @ 3)))))
\triangleright \Pi 11 (\Pi (2 @ 0) (Eq (2 @ 1 @ 1 @ (11 @ 1) @ 0) 0))
\triangleright \Pi 12 (\Pi 13 (\Pi 14 (\Pi (5 @ 0) (\Pi (15 @ 2 @ 1) (\Pi (16 @ 4 @ 3)
   (Eq (7 @ 4 @ 3 @ 1 @ (7 @ 5 @ 4 @ 0 @ 2))
      (7 @ 5 @ 3 @ (15 @ 5 @ 4 @ 3 @ 1 @ 0) @ 2)
  ))))))
\triangleright \Pi 13 (\Pi (4 @ 0) U)
\triangleright \Pi 14 (\Pi 15 (\Pi (6 @ 0) (\Pi (16 @ 2 @ 1) (\Pi (4 @ 2 @ 1)
   (El (5 @ 4 @ (8 @ 4 @ 3 @ 1 @ 2)))))))
\triangleright \Pi 15 (\Pi (6 @ 0) (\Pi (3 @ 1 @ 0)))
```

```
\triangleright \Pi 16 (\Pi 17 (\Pi 18 (\Pi (9 @ 0) (\Pi (6 @ 1 @ 0) (\Pi (20 @ 4 @ 3) (\Pi (21 @ 4 @ 3)
  (Eq (transp (10 @ 6 @ 5 @ 4 @ 3 @ 0 @ 1)
        (8 @ 5 @ 4 @ 3 @ 0 @ (8 @ 6 @ 5 @ (12 @ 5 @ 4 @ 0 @ 3) @ 1 @ 2)))
     (8 @ 6 @ 4 @ 3 @ (20 @ 6 @ 5 @ 4 @ 0 @ 1) @ 2)
  )))))))
\triangleright \Pi 17 (\Pi (8 @ 0) (El 19))
\triangleright \Pi 18 (\Pi 19 (\Pi (10 @ 0) (\Pi (20 @ 2 @ 1) (\Pi (8 @ 3 @ (11 @ 3 @ 2 @ 0 @ 1))
  (El (22 @ 4 @ (5 @ 3 @ 2)))))))
\triangleright \Pi 19 (\Pi 20 (\Pi 21 (\Pi (12 @ 0) (\Pi (22 @ 2 @ 1) (\Pi (10 @ 3 @ (13 @ 3 @ 2 @ 0
    (0,1)
  (\Pi (24 @ 5 @ 4)
     (Eq (23 @ 6 @ 5 @ (8 @ 4 @ 3) @ (7 @ 5 @ 4 @ 3 @ 2 @ 1) @ 0)
        (7 @ 6 @ 4 @ 3 @ (23 @ 2 @ 0) @
          (transp (13 @ 6 @ 5 @ 4 @ 3 @ 2 @ 0)
```

```
\triangleright \Pi 20 (\Pi (11 @ 0) (El (21 @ (4 @ 1 @ 0) @ 1)))
\triangleright \Pi 21 (\Pi (12 @ 0) (El (9 @ (5 @ 1 @ 0) @ (12 @ (5 @ 1 @ 0) @ 1 @ (2 @ 1 @
    0) @ 0))))
\triangleright \Pi 22 (\Pi 23 (\Pi (14 @ 0) (\Pi (24 @ 2 @ 1) (\Pi (12 @ 3 @ (15 @ 3 @ 2 @ 0 @ 1))
  (Eq (24 @ 4 @ (9 @ 3 @ 2) @ 3 @ (6 @ 3 @ 2) @ (8 @ 4 @ 3 @ 2 @ 1 @ 0))
    1)))))
\triangleright \Pi 23 (\Pi 24 (\Pi (15 @ 0) (\Pi (25 @ 2 @ 1) (\Pi (13 @ 3 @ (16 @ 3 @ 2 @ 0 @ 1))
  (Eq (transp (5 @ 4 @ 3 @ 2 @ 1 @ 0)
        (transp (15 @ 4 @ (10 @ 3 @ 2) @ 3 @ 2 @ (7 @ 3 @ 2) @ (9 @ 4 @ 3 @
    2 @ 1 @ 0))
       (13 @ 4 @ (10 @ 3 @ 2) @ (17 @ 4 @ 3 @ 1 @ 2) @ (9 @ 4 @ 3 @ 2 @ 1
    @ 0) @ (6 @ 3 @ 2))
```

github.com/jacobneu/GeneralizedAlgebra

Upshot

Now, the type of GATs is given as a quotient inductive-inductive type, so we can explicitly define constructions like (__) - Alg in a *structural*, *compositional* way.

bitbucket.org/akaposi/finitaryqiit/raw/master/appendix.pdf

Upshot

Unchat			- o ^c id	
Upshot			Assuming Ω : Con, the initial Ω -algebra is given by $\operatorname{con}_{\Omega} :\equiv \Omega^{\mathbb{C}}$ id $: \operatorname{Sub}_{\Omega} \Gamma \to \Gamma^{\mathbb{A}}$ $: \operatorname{Sub}_{\Omega} \Gamma \to \Gamma^{\mathbb{A}}$	
			ing Ω; Con, the initial Ω-aige	
			Assuming Ω : Con, the Inter- $\Gamma^{C} : \operatorname{Sub} \Omega \Gamma \to \Gamma^{A}$ $\Gamma^{C} : (\nu : \operatorname{Sub} \Omega \Gamma) \to \operatorname{Tm} \Omega (A[\nu]) \to A^{A} (\Gamma^{C} \nu)$ $\Gamma^{C} : (\nu : \operatorname{Sub} \Omega \Gamma) \to \Delta^{C} (\sigma \circ \nu) = \sigma^{A} (\Gamma^{C} \nu)$	
	.1.	ebras . Set	Γ^{C} $: (v : \operatorname{Sub}\Omega\Gamma) \to \operatorname{Tm}\Omega(\Lambda^{C}) = \sigma^{A}(\Gamma^{C})$	
		, 50	$\Gamma^{C} : (v : \operatorname{Sub}\Omega\Gamma) \to \operatorname{Tm}\Omega(A[v]) \to A^{C} : (v : \operatorname{Sub}\Omega\Gamma) \to A^{C$	
	Γ^	$: \Gamma^{\Lambda} \to \operatorname{Set}$	σ : (v: Sub ΣΣΤ)	
	Syntax A ^A	$: \Gamma^{\Lambda} \to \Delta^{\Lambda}$	t^{C} $\equiv tt$ $C \leftarrow v((\pi_2 v))$	
Now	Γ: Con	: (1 .	$C v := (\Gamma^{C}(\pi_{1}v), A^{C}(\pi_{1}v), t)$	50 MO COD
Now,	A: Ty T		t^{C} $C v :\equiv tt$ $(\Gamma \triangleright A)^{C} v :\equiv (\Gamma^{C} (\pi_{1} v), A^{C} (\pi_{1} v) (\pi_{2} v))$ $(A[\sigma])^{C} vt :\equiv tr_{A^{A}} (\sigma^{C} v) (A^{C} (\sigma \circ v) t)$ $(A[\sigma])^{C} vt :\Gamma^{C} v = \Gamma^{C} v$ $id^{C} v :\Gamma^{C} v = \Gamma^{C} v$ $(\sigma \circ \delta)^{C} v :\Delta^{C} (\sigma \circ \delta \circ v) \sigma^{C} (\underline{\delta} \circ v) \sigma^{A} (\Theta^{C} (\delta \circ v)) \delta^{C} = v \sigma^{A} (\delta^{A} (\Gamma^{C} v))$ $:tt = tt (t(v)) \sigma^{C} v \neq 0$	so we can
ovalic	$\sigma: \operatorname{Sub}\Gamma\Delta$	$:= T \\ := (\gamma : \Gamma^{A}) \times A^{A} \gamma$	$(A[\sigma])^{c} V^{c} V = \Gamma^{c} V$ $A(O^{c}(\delta \circ V))^{\delta c} V = \sigma^{A}(\delta^{A}(\delta \circ V))^{\delta c} V$	val way
explic	t:TmTA	$(\Gamma \triangleright A)$ $(\sigma \land Y)$	id ^C v	al way.
	. ; Con	(A[σ]) ' ;≡ Y	$id^{C} v$ $(\sigma \circ \delta)^{C} v : \Delta^{C} (\sigma \circ \delta \circ v) \xrightarrow{\sigma^{C} (\underline{\delta} \circ v)} \sigma^{A} (\underline{\Theta} (C) (\sigma \circ \delta)^{C} v) \cdot t^{A} (\Gamma^{C} v) \cdot t^$	V))
	$\Gamma \triangleright A : Con$ $(A : Ty \Delta)[\sigma : Sub \Gamma \Delta] : Ty \Gamma$	$id^{A} \gamma$ $:\equiv \sigma^{A} (\delta^{A} \gamma)$		
	(A: IVB)	$(\sigma \circ \delta)^{A} \gamma$ $\cong \sigma$ $(\sigma \circ \delta)^{A} \gamma$ $\cong tt$	$(\sigma,t)^{C} v : (\Gamma^{C}(\sigma \circ v), A^{C}(\sigma \circ v)) (\Gamma^{C})^{D} $ $(\sigma,t)^{C} v : (\Delta^{C}(\pi_{1}(\sigma \circ v))) \xrightarrow{\sigma^{C}_{C} v} \operatorname{proj}_{1}(\sigma^{A}(\Gamma^{C}v)) $ $(\sigma,\sigma)^{C} v : (\sigma^{C}(\sigma \circ v)) \xrightarrow{\sigma^{C}_{C} v} \operatorname{proj}_{2}(\sigma^{A}(\Gamma^{C}v)) $ $(\sigma,\sigma)^{C} v : (\sigma^{C}(\sigma \circ v), A^{C}(\sigma \circ v)) \xrightarrow{\sigma^{C}_{C} v} \operatorname{proj}_{2}(\sigma^{A}(\Gamma^{C}v)) $	
	$id: Sub\Gamma\Gamma$ $(\sigma: Sub\Theta\Delta) \circ (\delta: Sub\Gamma\Theta) : Sub\Gamma\Delta$	$\epsilon^{\Lambda} Y$ $\Lambda = t^{\Lambda} Y$	$(\sigma,t)^{C} v : (\Gamma^{C}(\sigma \circ v)) \xrightarrow{\sigma^{C}_{=} v} \operatorname{proj}_{1} (\sigma^{A}(\Gamma^{C} v))$ $(\pi_{1}\sigma)^{C} v : \Delta^{C}(\pi_{1}(\sigma \circ v)) \xrightarrow{\sigma^{C}_{=} v} \operatorname{proj}_{2} (\sigma^{A}(\Gamma^{C} v))$ $(\pi_{2}\sigma)^{C} v : A^{C}(\pi_{1}(\sigma \circ v)) \xrightarrow{\tau^{C}(\sigma \circ v)} t^{A}(\delta^{C}(\sigma \circ v)) \xrightarrow{\sigma^{C}_{=} v} t^{A}(\sigma \circ v)$	A(TC V))
	$(\sigma: \operatorname{Sub} \Theta \Delta) \circ (\sigma)$	$(\sigma,t)^{A}\gamma$ $:= (\sigma,t)^{A}\gamma$	$(\pi_1 \sigma)^C v : \Delta^C (\pi_1 (\sigma \circ v)) (\pi_2 (\sigma \circ v)) \stackrel{\sigma}{=} \operatorname{proj}_2 (\sigma \circ v) \stackrel{\sigma}{=} v t^A (\sigma \circ v))$	D -
•	$(\sigma : \operatorname{Sub} \Theta \Delta) \circ (\sigma : \operatorname{Sub} \Gamma)$ $\epsilon : \operatorname{Sub} \Gamma \cdot (\sigma : \operatorname{Sub} \Gamma \Delta), (t : \operatorname{Tm} \Gamma (A[\sigma])) : \operatorname{Sub} \Gamma (\Delta D)$	A) $(\sigma, t)^{\Lambda} Y$ $(\pi_1 \sigma)^{\Lambda} Y$ $\cong \operatorname{proj}_1(\sigma^{\Lambda} Y)$	$(\sigma, t) \stackrel{\circ}{=} v \qquad : \Delta^{C} (\pi_{1} (\sigma \circ v)) \stackrel{\circ}{=} proj_{1} (\sigma \circ v) \qquad (\sigma \circ v) \stackrel{\circ}{=} v proj_{2} (\sigma^{A} (\Gamma^{C} v)) \qquad (\pi_{1} \sigma)^{C} v \qquad : A^{C} (\pi_{1} (\sigma \circ v)) (\pi_{2} (\sigma \circ v)) \stackrel{\sigma^{C}}{=} v proj_{2} (\sigma^{A} (\Gamma^{C} v)) \qquad (\pi_{2} \sigma)^{C} v \qquad : A^{C} (\pi_{1} (\sigma \circ v)) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} v t^{A} (\sigma \circ v) (t [\sigma \circ v]) \stackrel{\circ}{=} $	
	$(\sigma: \operatorname{Sub}\Gamma\Delta), (t:\operatorname{Tm}\Gamma)$	$(\pi_1 \sigma)^{\Lambda} Y$ $:\equiv \operatorname{proj}_2 (\sigma^{\Lambda} Y)$	$(t[\sigma])^{C} v : A^{C} (\sigma \circ V) (t)$ $A^{C} v t = A^{C} v t$ $A^{C} (\sigma \circ \delta \circ V) t$	
	$(\sigma : \operatorname{Sub}\Gamma \Delta), (\nabla G) = \operatorname{Sub}\Gamma \Delta$ $\pi_1 (\sigma : \operatorname{Sub}\Gamma (\Delta \triangleright A)) : \operatorname{Sub}\Gamma \Delta = \operatorname{Sub}\Gamma (A[\pi_1 \sigma])$	$^{\Lambda}(\sigma^{\Lambda}Y)$		
	$\pi_{1} (\sigma : \operatorname{Sub} \Gamma (\Delta \triangleright A)) : \operatorname{Tm} \Gamma (A[\pi_{1} \sigma])$ $\pi_{2} (\sigma : \operatorname{Sub} \Gamma (\Delta \triangleright A)) : \operatorname{Tm} \Gamma (A[\sigma])$	$(t[\sigma])^{A} \gamma$ $:= refl$	$\{\circ\}^{C}$ $A^{C}(\sigma \circ \sigma \circ \sigma)^{C}$	
	$\pi_2(\sigma: SubT(\Delta))$	5. 11A	.cc :≡ Uli	
	$\pi_{2}(\sigma : \operatorname{Sub}\Gamma(\Delta \triangleright A)) \cdot Tm\Gamma(A[\sigma])$ $(t : \operatorname{Tm}\Delta A)[\sigma : \operatorname{Sub}\Gamma\Delta] : \operatorname{Tm}\Gamma(A[\sigma])$	r-1A :≡ 1611	.u ^C :≡ 0.	
	[id]: A[id] = A $[id]: A[id] = A$		C :≣ U.	
	$[id] : A[id] = N$ $[\circ] : A[\sigma \circ \delta] = A[\sigma][\delta]$ $[\circ] : A[\sigma \circ \delta] = A[\sigma][\delta]$. uA	C ;≣ UIF	
	$ass: (\sigma \circ \delta) \circ V$:≡ ren	0 C := 011	
	$id: id \circ \sigma = \sigma$	A :≡ 1611	$ \begin{array}{ccc} & & & \downarrow & \downarrow & \downarrow \\ & & & \downarrow & \downarrow & \downarrow \\ & & & & \downarrow & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & & & & & \downarrow & \downarrow \\ & \downarrow & \downarrow \\ & \downarrow & \downarrow & \downarrow \\ & \downarrow $	
		0 A ;≡ (C.1	V P2	
	(Subl)	$\triangleright \beta_1 \\ \triangleright \beta_2^{\Lambda} := refl$		
	$\triangleright \beta_1 : \pi_1(\sigma, \iota)$			
	- N=t			

Upshot

Now, the explicitly

bit-

```
\triangleright \eta: (\pi_1\,\sigma,\pi_2\,\sigma) = \sigma
                , \circ : (\sigma, t) \circ \delta = (\sigma \circ \delta, t[\delta])
                                                                                                                                            \triangleright \eta^A
                                                                                                                                                                                   :≡ refl
                                                                                                                                                                                                                                                      \triangleright \eta^{C}
                                                                                                                                          . oA
               U: Ty [
                                                                                                                                                                                                                                                                                         :≡ UIP
                                                                                                                                                                                 :≡ ref[
              \mathsf{EI}\,(a:\mathsf{Tm}\,\Gamma\,\mathsf{U}):\mathsf{Ty}\,\Gamma
                                                                                                                                          U^{A}_{Y}
                                                                                                                                                                                                                                                                                        :≡ UIP
                                                                                                                                                                                 :≡ Set
                                                                                                                                                                                                                                                   U^{C} \nu a
             U[]:U[\sigma]=U
                                                                                                                                         (Ela)^A y
                                                                                                                                                                                                                                                                                       :\equiv \operatorname{Tm} \Omega \left( \operatorname{El} a \right)
                                                                                                                                                                               \equiv a^A y
                                                                                                                                                                                                                                                   (E|a)^C vt
             \mathsf{EI}[]: (\mathsf{EI}\,a)[\sigma] = \mathsf{EI}\,(a[\sigma])
                                                                                                                                                                                                                                                                                    :\equiv \operatorname{coe} \left(a^{\mathsf{C}} \ \nu : \operatorname{Tm} \Omega \left(\operatorname{\mathsf{El}} a\right) = a^{\mathsf{A}} \left(\Gamma^{\mathsf{C}} \ \nu\right)\right) t
                                                                                                                                        U[]A
                                                                                                                                                                               :≡ refl
           \Pi \ (a : \mathsf{Tm} \ \Gamma \ \mathsf{U}) \ (B : \mathsf{Ty} \ (\Gamma \rhd \mathsf{El} \ a)) : \mathsf{Ty} \ \Gamma
                                                                                                                                                                                                                                                  ULLC
                                                                                                                                       EI[]A
                                                                                                                                                                                                                                                                                     : \operatorname{Tm} \Omega a = \operatorname{Tm} \Omega a
                                                                                                                                                                             :≡ refl
                                                                                                                                                                                                                                                 EIIIC
                                                                                                                                      (\Pi a B)^A y
                                                                                                                                                                           :\equiv (\alpha:a^{A}\gamma)\to B^{A}(\gamma,\alpha)
                                                                                                                                                                                                                                                                                   : t = t
          \mathsf{app}\;(t:\mathsf{Tm}\;\Gamma\;(\Pi\;a\;B)):\mathsf{Tm}\;(\Gamma\;\rhd\;\mathsf{El}\;a)\;B
                                                                                                                                                                                                                                              (\Pi \, a \, B)^{\mathsf{C}} \, \nu \, t \quad :\equiv \lambda \alpha . B^{\mathsf{C}} \, (\, \nu, \mathsf{coe} \, (a^{\mathsf{C}} \, \nu^{-1}) \, \alpha) \, (\, t \, @ \, \mathsf{coe} \, (a^{\mathsf{C}} \, \nu^{-1}) \, \alpha)
                                                                                                                                    (\operatorname{app} t)^{A} (\gamma, \alpha) :\equiv t^{A} \gamma \alpha
         \Pi[\,]:(\Pi\,a\,B)[\sigma]=\Pi\,(a[\sigma])\,(B[\sigma^{\uparrow}])
                                                                                                                                                                                                                                                                              : B^{\mathsf{C}} \nu \left( (\mathsf{app} \, t) [\nu] \right)^{t^{\mathsf{C}}} \stackrel{(\pi_1 \, \nu)}{=} t^{\mathsf{A}} \left( \Gamma^{\mathsf{C}} (\pi_1 \, \nu) \right) (\pi_2 \, \nu)
        app[]: (app t)[\sigma \uparrow] = app (t[\sigma])
                                                                                                                                    \Pi[]^A
                                                                                                                                                                          :≡ refl
                                                                                                                                                                                                                                                                               :\lambda\alpha.B^{\mathsf{C}}\left(\sigma\circ\nu,\alpha\right)\left(t@\alpha\right)=\lambda\alpha.B^{\mathsf{C}}\left(\sigma\circ\nu,\alpha\right)\left(t@\alpha\right)
                                                                                                                                                                                                                                              \Pi[]_{c}
                                                                                                                                   app[]A
       \mathsf{Id}\,(a:\mathsf{Tm}\,\Gamma\,\mathsf{U})\;(t\,u:\mathsf{Tm}\,\Gamma\,(\mathsf{EI}\,a)):\mathsf{Ty}\,\Gamma
                                                                                                                                                                          :≡ refl
                                                                                                                                                                                                                                             app[]C
      reflect (e : Tm \Gamma (Id a t u)) : t = u
                                                                                                                                  (\operatorname{Id} atu)^{A} \gamma
                                                                                                                                                                    :\equiv (t^{A}\gamma = u^{A}\gamma)
                                                                                                                                                                                                                                           (\operatorname{Id} a t u)^{\mathsf{C}} v e : t^{\mathsf{A}} (\Gamma^{\mathsf{C}} v) \stackrel{t^{\mathsf{C}}}{=} {}^{v} t [v] \stackrel{\operatorname{reflect} e}{=} u [v] \stackrel{u^{\mathsf{C}}}{=} {}^{v} u^{\mathsf{A}} (\Gamma^{\mathsf{C}} v)
     \operatorname{Id}[\,]: (\operatorname{Id} a\,t\,u)[\,\sigma] = \operatorname{Id}\,(a[\,\sigma])\;(t[\,\sigma])\;(u[\,\sigma])
                                                                                                                                 (reflect e)^A
                                                                                                                                                                      \equiv funext e^A
    \hat{\Pi}(T : \mathsf{Set}) (B : T \to \mathsf{Ty}\,\Gamma) : \mathsf{Ty}\,\Gamma
                                                                                                                                 Id[]A
                                                                                                                                                                       :≡ refl
                                                                                                                                                                                                                                          Id[]C
                                                                                                                               (\hat{\Pi} T B)^A \gamma
   (t:\operatorname{Tm}\Gamma\left(\hat{\Pi}\,T\,B\right))\,\hat{\varrho}(\alpha:T):\operatorname{Tm}\Gamma\left(B\,\alpha\right)
                                                                                                                                                                                                                                                                              :≡ UIP
                                                                                                                                                                    :\equiv (\alpha:T) \to (B\alpha)^{\mathsf{A}} \gamma
                                                                                                                                                                                                                                        (\hat{\Pi}TB)^{\mathsf{C}}\nu t := \lambda\alpha.(B\alpha)^{\mathsf{C}}\nu(t\,\hat{\otimes}\,\alpha)
 \hat{\Pi}[\,]:(\hat{\Pi}\,T\,B)[\,\sigma]=\hat{\Pi}\,T\,(\lambda\alpha.(B\,\alpha)[\,\sigma])
                                                                                                                              (t \hat{\otimes} \alpha)^A \gamma
                                                                                                                                                                     \equiv t^A \gamma \alpha
                                                                                                                                                                                                                                        (t \hat{\otimes} \alpha)^{C} \nu
                                                                                                                                                                                                                                                                       : (B\alpha)^{\mathsf{C}} \, \nu \, (t[\nu] \, \hat{\underline{a}} \, \alpha) \, \stackrel{t^{\mathsf{C}}}{=} {}^{\nu} \, t^{\mathsf{A}} \, (\Gamma^{\mathsf{C}} \, \nu) \, \alpha
                                                                                                                             \hat{\Pi}[]^{A}
                                                                                                                                                                    :≡ refl
                                                                                                                                                                                                                                       \hat{\Pi}[]^{C}
\hat{@}[\,]:(t\,\hat{@}\,\alpha)[\sigma]=(t[\sigma])\,\hat{@}\,\alpha
                                                                                                                                                                                                                                                                         :\lambda\alpha.(B\alpha)^{C}\left(\sigma\circ\nu\right)\left(t\,\hat{\varpi}\,\alpha\right)=
                                                                                                                                                                                                                                                                               \lambda\alpha.(B\alpha)^{\mathsf{C}}\,(\sigma\circ\nu)\,(t\,\hat{\underline{a}}\,\alpha)(\hat{\Pi}\,T\,(\lambda\alpha.(B\alpha)[\sigma]))^{\mathsf{C}}\,\nu\,t
                                                                                                                           @∏^
                                                                                                                                                                   :≡ refl
                                                                                                                                                                                                                                     @[]C
                                                                                                                                                                                                                                                                        :≡ UIP
```

we can I way.

p-

2 Concrete CwFs

Central Dogma of Category Theory

Every notion of "structure" comes equipped with a notion of "structure-preserving morphism"

Central Dogma of Generalized Algebra

Every notion of "structure" comes equipped with a notion of "structure-preserving morphism", "displayed structure", and "section"

Displayed Nat-Algebra is induction data

```
\mathfrak{N} - DAIg (N, z, s) =
        (N^{\mathbb{D}} \colon N \to \mathsf{Set})
  \times (z^{\mathbb{D}}: N^{\mathbb{D}}(z))
  \times (s^{\mathbb{D}}: (n: \mathbb{N}) \to \mathbb{N}^{\mathbb{D}}(n) \to \mathbb{N}^{\mathbb{D}}(s n))
\mathfrak{N} - Sect (N, z, s) (N^{D}, z^{D}, s^{D}) =
        (N^{S}: (n: N) \rightarrow N^{D}(n))
  \times (N^{S}(z) = z^{D})
  \times ((n: N) \rightarrow N^{S}(s n) = s^{D} n (N^{S} n))
```

Every displayed algebra over the initial algebra admits a section

- Induction: From a predicate with sufficient data, obtain a section by induction
- Unary Parametricity

$$\{X: U, x: X\} \vdash t: X$$

Proof irrelevant displayed algebras

```
\mathfrak{Grp} - DAIg (M, u, \mu, \_, \_, i, \_, i) = 0
       (M^{\mathbb{D}}: M \to \mathsf{Prop})
  \times (u^{\mathsf{D}} : M^{\mathsf{D}}(u))
  	imes (\mu^{\mathrm{D}} \colon (m_0 \ m_1 \colon M) 	o M^{\mathrm{D}}(m_0) 	o M^{\mathrm{D}}(m_1) 	o M^{\mathrm{D}}(\mu(m_0, m_1)))
  × . . .
  × . . .
  × ...
  \times ((m: M) \rightarrow M^{D}(m) \rightarrow M^{D}(i m))
  × . . .
  × . . .
```

Notice something...

$$\mathfrak{G}$$
 - Alg: Set
$$_ \to _ : \mathfrak{G} - \mathsf{Alg} \to \mathfrak{G} - \mathsf{Alg} \to \mathsf{Set}$$

$$\mathfrak{G} - \mathsf{DAlg} : \mathfrak{G} - \mathsf{Alg} \to \mathsf{Set}$$

$$\mathfrak{G} - \mathsf{Sect} : (\Gamma : \mathfrak{G} - \mathsf{Alg}) \to \mathfrak{G} - \mathsf{DAlg} \to \mathsf{Set}$$

Con: Set Sub: Con \rightarrow Con \rightarrow Set

Ty: Con \rightarrow Set

 $\mathsf{Tm} \colon (\Gamma \colon \mathsf{Con}) \to \mathsf{Ty} \ \Gamma \to \mathsf{Set}$

The Algebras of a GAT form a CwF!

Central Dogma of Category Theory

Every notion of "structure" comes equipped with a notion of "structure-preserving morphism", i.e. *forms a category*

Central Dogma of Generalized Algebra

Every notion of "structure" comes equipped with a notion of "structure-preserving morphism", "displayed structure", and "section", i.e. forms a category with families

"Concrete CwFs"

The CwF of CwFs?

3 Fibrancy and Autosynthesis

Is the concrete CwF of setoids the same thing as the setoid model?

Is the concrete CwF of groupoids the same thing as the *groupoid model*?

No

Question: Can we do this more generally?

Fibrancy Question

For which GATs can we articulate an appropriate notion of "fibrancy" for their concrete CwF's types (i.e. their displayed algebras)?

Cosmic Question

For which GATs \mathfrak{G} can the category of \mathfrak{G} -algebras be viewed as a \mathfrak{G} -algebra?

Autosynthesis Question

For which GATs & does (some fibrant version of) their concrete CwF interpret a synthetic theory of &-algebras?

Work on these questions for category-like GATs

- Setoids: ✓ (Hofmann, Altenkirch,...)
- Groupoids: ✓ (Hofmann & Streicher)
- Categories:
 - Cosmic √ (Lawvere,...)
 - ► Fibrancy
 √ (Grothendieck,...)
 - Autosynthesis Most directedTT/synthetic CT is in a different direction; work remains to be done (Harper & Licata, North,...)

My PhD thesis: Work the category case out fully

Thanks for listening!

github.com/jacobneu/GeneralizedAlgebra

bitbucket.org/akaposi/finitaryqiit/raw/master/appendix.pdf