
Characterizing Nondeterministic Union

Jacob Neumann
jacobneu@andrew.cmu.edu
April 19, 2021

Abstract

1 Introduction and Syntax

Definition 1.1
Given any set Π, define the following supersets of Π:

or≤0(Π) := Π

or≤1(Π) := Π ∪
{
π or π′ : π, π′ ∈ Π

}
or≤n+1(Π) := Π ∪

{
σ or σ′ : σ, σ′ ∈ or≤n(Π)

}
(n ∈ N)

or<ω(Π) :=
⋃
n∈N

or≤n(Π)

For any n > 0, we’ll sometimes write or<n(Π) for or≤n−1(Π).

Definition 1.2
Given a set Σ, let

Σ† := Σ ∪ {skip, abort} .

Definition 1.3
For a fixed set Φ of atomic propositions and a set Σ of program names, define the language
L�©(Σ) by the grammar

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ | ©σϕ. (p ∈ Φ, σ ∈ Σ)

We’ll make use of the standard (classical) abbreviations, e.g. ϕ → ψ for ¬(ϕ ∧ ¬ψ), > for
¬(p ∧ ¬p), and ♦ϕ for ¬�¬ϕ.

Definition 1.4
We’ll use the abbreviations

Maybe0(p, π0, π1) :≡ ©π0p ↔ ©π0 or π1p

Maybe1(p, π0, π1) :≡ ©π1p ↔ ©π0 or π1p

and

Only0(p, π0, π1) :≡ (©π0p ∧ ¬©π1 p ∧ ©π0 or π1p) ∨ (¬©π0 p ∧ ©π1p ∧ ¬©π0 or π1 p)

Only1(p, π0, π1) :≡ (¬©π0 p ∧ ©π1p ∧ ©π0 or π1p) ∨ (©π0p ∧ ¬©π1 p ∧ ¬©π0 or π1 p)

Characterizing Nondeterministic Union 2

2 Dynamic Topological Logic and Union Augmentation

Definition 2.1
A topology on a nonempty set X is given in one of two equivalent ways:

• By a function
int : P(X)→ P(X)

sending each subset A ⊆ X to its interior, such that the following axioms are satisfied.

(Int1) int(X) = X

(Int2) int(A) ⊆ A for all A ⊆ X
(Int3) int(int(A)) = int(A) for all A ⊆ X
(Int4) int(A ∩B) = int(A) ∩ int(B) for all A,B ⊆ X

• By a collection τ of subsets of X (τ ⊆ P(X)) satisfying

(Top1) ∅, X ∈ τ
(Top2) If A,B ∈ τ , then A ∩B ∈ τ
(Top3) If Ai ∈ τ for all i ∈ I,

(⋃
i∈I Ai

)
∈ τ

The elements of τ are known as open sets, or are said to be open with respect to τ .

The equivalence of these definitions can be seen by putting intX(A) to be the set of those a ∈ A
such that a ∈ U ⊆ A for some U ∈ τ , or conversely by defining τ to be the set of fixed points
of intX (those subsets A ⊆ X such that intX(A) = A). Throughout, we shall use whichever
form is most convenient.

Definition 2.2
Given sets X,Y and topologies τX , τY on them, a relation R ⊆ X × Y is

• open if A ∈ τX implies R(A) ∈ τY

• continuous if B ∈ τY implies R−1(B) ∈ τX

Definition 2.3
Let X and Y be sets, with topologies τX and τY . The product topology of τX and τY is
the least1 topology on X × Y containing all sets of the form

U × V for some U ∈ τX , V ∈ τY .

Equivalently, the subsets of W ⊆ X × Y which are open with respect to the product
topology are those of the form ⋃

i∈I
Ui × Vi

where Ui ∈ τX , Vi ∈ τY for all i ∈ I.

1In the sense of containment: τ1 is “less than” τ2 if A ∈ τ1 implies A ∈ τ2, i.e. τ1 ⊆ τ2. This is often indicated
by saying τ1 is coarser than τ2”, or “τ2 is finer than τ1”. We are defining the product topology to be the coarsest
topologysatisfying the condition above.

Characterizing Nondeterministic Union 3

Definition 2.4
For any set X, the indiscrete (or trivial) topology on X is the topology

τ = {∅, X} .

Lemma 2.1
For sets X and Y equipped with topologies, the projection functions

pr1 : X × Y → X pr2 : X × Y → Y

defined by pr1(x, y) = x and pr2(x, y) = y are open and continuous.

Definition 2.5
For Σ some set, a Σ dynamic topological model (“Σ-DTM”) M consists of the following.

• A set |M|

• A topology intM : P(|M|)→ P(|M|) on the set |M|

• For each σ ∈ Σ, a partial function

‖σ‖M : |M|⇀ |M|

• A function
VM : Φ→ P(|M|)

where Φ is some give set of atomic propositions.

Definition 2.6
For any set Σ and any Σ-DTM M, define:

• ‖skip‖M : |M| → |M| is the identity function taking x ∈ |M| to itself;

• ‖abort‖M : |M|⇀ |M| is the function which is defined nowhere: ‖abort‖M (x) is undefined
for all x ∈ |M|.

Definition 2.7
For a Σ-DTM M, define the interpretation of L�©

(
Σ†
)

in M,2

J−KM : L�©
(

Σ†
)
→ P(|M|)

by structural recursion on ϕ:

JpKM = VM(p) (p ∈ Φ)

J¬ϕKM = |M| \ JϕKM
Jϕ ∧ ψKM = JϕKM ∩ JψKM

J�ϕKM = intM(JϕKM)

J©σϕKM = ‖σ‖−1
M (JϕKM)

For x ∈ |M|, write (M, x) |= ϕ to mean that x ∈ JϕKM. For instance, (M, x) |= ©σϕ if and
only if ‖σ‖M (x) is defined and (M, ‖σ‖M (x)) |= ϕ. Furthermore, write M |= ϕ to indicate
that JϕKM = |M|.
We may omit the M subscript when M is clear from context.

2Note we are interpreting L�©
(
Σ†

)
, not just L�©(Σ), care of Defn. 2.6.

Characterizing Nondeterministic Union 4

Definition 2.8
Write Σ-DTM for the class of all Σ-DTMs.

For any Θ and any Σ ⊆ Θ, we can view Θ-DTMs as Σ-DTMs simply by “forgetting” about
their interpretations ‖θ‖ for θ ∈ Θ \ Σ. We denote this as

(−)�Σ : Θ-DTM→ Σ-DTM

i.e. writing M�Σ ∈ Σ-DTM for M ∈ Θ-DTM.

Definition 2.9 (DTM-to-DTM Program Constructor)
A program constructor C consists of

• A rule (called the syntactic component of C) assigning to each set Π a set Πc. For all
the examples we’ll deal with here, Πc will be a superset of Π.

• For each Π, a function (called the semantic component of C)

(−)C : Π-DTM→ Πc-DTM

so, for each Π-DTM M, MC is a Πc-DTM.

Definition 2.10
Define {0, 1}<ω to be the set of finite binary strings s,

s ::= ε | 0s | 1s.

ε is called the empty string, and all other elements of {0, 1}<ω are called nonempty. We generally
write nonempty strings with the ε at the end omitted.

Define some standard operations on strings.

• Define the length of a string s ∈ {0, 1}<ω recursively by:

len(ε) = 0

len(0s) = 1 + len(s)

len(1s) = 1 + len(s)

Write {0, 1}n for the set of those s ∈ {0, 1}<ω such that len(s) = n, and analogously for
{0, 1}<n and {0, 1}≤n.

• For s ∈ {0, 1}m and t ∈ {0, 1}n, write s_t ∈ {0, 1}m+n for the concatenation of s and t.

• Define the head and tail of nonempty strings:

hd(0s) = 0

hd(1s) = 1

tl(0s) = s

tl(1s) = s.

Clearly, len(tl(s)) = len(s)− 1, so we could say

hd : {0, 1}n+1 → {0, 1} and tl : {0, 1}n+1 → {0, 1}n

for each n.

Characterizing Nondeterministic Union 5

Definition 2.11
Define {0, 1}ω to be the set of infinite binary streams S,

S : N→ {0, 1} .

Define the head and tail of a stream:

hd : {0, 1}ω → {0, 1}
: S 7→ S(0)

tl : {0, 1}ω → {0, 1}ω

: S 7→ (i 7→ S(i+ 1)).

The last line means that tl(S)(i) = S(i+ 1) for all S ∈ {0, 1}ω and all i ∈ N.

Definition 2.12
For each natural number n, the n-fold nondeterministic union program constructor,
denoted OR {n}, is a program constructor

• Whose syntactic component takes Π to or≤n
(
Π†
)

(recall Defn. 1.1)

• Whose semantic component takes M to MOR{n}, where MOR{n} is defined by:

–
∣∣MOR{n}∣∣ = |M| × {0, 1}≤n (Recall Defn. 2.10);

– intMOR{n} is the product topology of intM and the indiscrete topology on {0, 1}≤n;

– ‖π‖MOR{n} (x, s) = (‖π‖M (x), s) for any π ∈ Π†;

– for any σ0, σ1 ∈ or<n
(
Π†
)
,

‖σ0 or σ1‖MOR{n} (x, ε) is undefined,

‖σ0 or σ1‖MOR{n} (x, 0s) = ‖σ0‖MOR{n} (x, s),

‖σ0 or σ1‖MOR{n} (x, 1s) = ‖σ1‖MOR{n} (x, s);

– and for p ∈ Φ,
(x, s) ∈ VMOR{n}(p) ⇐⇒ x ∈ VM(p).

Definition 2.13
The limited nondeterministic union program constructor, denoted OR {<ω}, is a pro-
gram constructor

• Whose syntactic component takes Π to or<ω
(
Π†
)

• Whose semantic component takes M to MOR{<ω}, where MOR{<ω} is defined by:

–
∣∣MOR{<ω}∣∣ = |M| × {0, 1}<ω;

– intMOR{<ω} is the product topology of intM and the indiscrete topology on {0, 1}<ω;

– ‖π‖MOR{<ω} (x, s) = (‖π‖M (x), s) for any π ∈ Π†;

– for any σ0, σ1 ∈ or<ω
(
Π†
)
,

‖σ0 or σ1‖MOR{<ω} (x, ε) is undefined,

‖σ0 or σ1‖MOR{<ω} (x, 0s) = ‖σ0‖MOR{<ω} (x, s),

‖σ0 or σ1‖MOR{<ω} (x, 1s) = ‖σ1‖MOR{<ω} (x, s);

Characterizing Nondeterministic Union 6

– and for p ∈ Φ,
(x, s) ∈ VMOR{<ω}(p) ⇐⇒ x ∈ VM(p).

The unlimited nondeterministic union program constructor, denoted OR {ω}, is a
program constructor

• Whose syntactic component takes Π to or<ω
(
Π†
)

(note that this still only allows for
arbitrary finite nesting of ors)

• Whose semantic component takes M to MOR{ω}, where MOR{ω} is defined by:

–
∣∣MOR{ω}∣∣ = |M| × {0, 1}ω;

– intMOR{ω} is the product topology of intM and the indiscrete topology on {0, 1}ω

– ‖π‖MOR{ω} (x, S) = (‖π‖M (x), S) for π ∈ Π†;

– for any σ0, σ1 ∈ or<ω
(
Π†
)
,

‖σ0 or σ1‖MOR{ω} (x, S) =

{
‖σ0‖MOR{ω} (x, tl S) if hd(S) = 0

‖σ1‖MOR{ω} (x, tl S) if hd(S) = 1;

– and for p ∈ Φ,
(x, s) ∈ VMOR{ω}(p) ⇐⇒ x ∈ VM(p).

Note 2.1
For β = 0, 1, 2, . . . , <ω, ω, the definition of

‖skip‖FOR{β} and ‖abort‖FOR{β}

given by Defn. 2.12/Defn. 2.13 matches the one given for arbitrary DTMs in Defn. 2.6.

3 Refinement

Definition 3.1
Write Σ-Frame for the class of all Σ-frames.

For any Σ, we have the class function

U : Σ-DTM→ Σ-Frame

sending each Σ-DTM to its underlying Σ-frame, i.e. “forgetting” about the valuation function
VM. The fibers of this function we’ll denote as:

DTMs(F) := {M ∈ Σ-DTM : U(M) = F} .

Definition 3.2 (Frame-to-Frame Program Constructor)
A program constructor (of frames) C consists of

• A rule (called the syntactic component of C) assigning to each set Π a set Πc.

• For each Π, a function (called the semantic component of C)

(−)C : Π-Frame→ Πc-Frame

so, for each Π-frame F , FC is a Πc-frame.

Characterizing Nondeterministic Union 7

Definition 3.3
Given Π ⊆ Σ and a Σ-frame G, a Π-refinement relation on G is a binary relationR ⊆ |G|×|G|
such that the following hold.

(RR1) R is an equivalence relation.

(RR2) For all π ∈ Π, if x, x′ are points of G such that xRx′, then

‖π‖G (x) is defined ⇐⇒ ‖π‖G (x′) is defined

and, if they are defined,
(‖π‖G (x), ‖π‖G (x′)) ∈ R.

(RR3) If A ⊆ |G| is open with respect to intG , then the set

R(A) := {x ∈ |G| : ∃a ∈ A s.t. xRa}

is also open with respect to intG .

Definition 3.4
Given sets Π ⊆ Σ, a (Π,Σ)-refined frame is a pair (G,R) where G is a Σ-frame and R is a
Π-refinement relation on G.

A valuation function V : Φ → P(|G|) is said to respect R if for any atomic proposition
p ∈ Φ and any pair of R-related G-worlds, (x, x′) ∈ R, we have

x ∈ V (p) ⇐⇒ x′ ∈ V (p).

Write DTMs(G,R) for the set of Σ-DTMs N such that U(N) = G and VN respects R. A refined
frame (G,R) is said to satisfy a formula ϕ ∈ L�©(Σ) – written (G,R) |= ϕ – if

N |= ϕ for all N ∈ DTMs(G,R).

Finally, write
Th�©(Σ;G,R)

for the set {ϕ ∈ L�©(Σ) : (G,R) |= ϕ}.

Proposition 3.1
Let C be OR {β} for β = 0, 1, 2, . . . , <ω, ω, and F an arbitrary Π-frame. Then the relation RCF
defined on

∣∣FC∣∣ by

(x, γ)RCF (x′, γ′) ⇐⇒ x = x′

is a Π-refinement relation on FC .

Lemma 3.2
For C, F as in Prop. 3.1, the following equality holds.

DTMs
(
FC ,RCF

)
=
{
MC : M ∈ DTMs(F)

}
Definition 3.5

Given a topology τ on a set X and an equivalence relation R ⊆ X ×X, define the quotient
topology to be the greatest topology on X/R (the set of R-equivalence classes) such that the
function

QR : X → X/R

x 7→ [x] =
{
x′ ∈ X : xRx′

}

Characterizing Nondeterministic Union 8

is continuous.

Equivalently, the quotient topology is uniquely identified by the following property: a set
V ⊆ X/R is open with respect to the quotient topology if and only if Q−1

R (V) ∈ τ .

Lemma 3.3
The quotient function QR : X → X/R is open with respect to the topology τX on X and the
quotient topology τX/R on X/R iff the equivalence relation R satisfies (RR3):

if A ∈ τX , then R(A) ∈ τX .

Definition 3.6
Given a (Π,Σ)-refined frame (G,R), let the quotient frame of G by R be the Π-frame G/R
defined by

• |G/R| = |G| /R

• intG/R is the quotient topology of intG by R

• For each π ∈ Π and x ∈ |G|,

‖π‖G/R ([x]) =
[
‖π‖G (x)

]
which is well-defined by (RR2).3

Lemma 3.4
For each (Π,Σ)-refined frame (G,R), there is a bijection

κR : DTMs(G/R)→ DTMs(G,R)

such that

(M, [y]R) |= ϕ ⇐⇒ (κR(M), y) |= ϕ

M |= ϕ ⇐⇒ κR(M) |= ϕ

for all M ∈ DTMs(G/R), y ∈ |G|, ϕ ∈ L�©(Π).

Definition 3.7
Given Σ-frames F and G, a Σ-isomorphism is a function I : |F| → |G| which

• is bijective;

• respects each σ ∈ Σ: if I(x) = y then ‖σ‖F (x) is defined iff ‖σ‖G (y) is defined, and, if
both are defined,

I(‖σ‖F (x)) = ‖σ‖G (y);

• is continuous and open with respect to intF and intG .

We write F ∼=Σ G to mean that there is such a Σ-isomorphism between F and G.

Proposition 3.5
Let C = OR {β} for β = 0, 1, 2, . . . , <ω, ω and F be any Π-frame.

F ∼=Π FC/RCF .
3If ‖π‖G (x) is undefined for some x, then, by (RR2), ‖π‖G (x′) is undefined for all x′ ∈ [x]. In this case, Defn. 3.6

specifies ‖π‖G/R to be undefined at [x].

Characterizing Nondeterministic Union 9

4 Bisimulation

Definition 4.1
Given Σ-frames F and G, a binary relation s ⊆ |F| × |G| is said to be a Σ-bisimulation (of
frames) if

• s is total : for each x ∈ |F| there exists y ∈ |G| such that xsy.

• s is open and continuous with respect to intF and intG

• s respects each σ ∈ Σ: if xsy, then ‖σ‖F (x) is defined iff ‖σ‖G (y) is defined, and, if both
are defined,

(‖σ‖F (x), ‖σ‖G (y)) ∈ s.

We write s : F →| Σ G to indicate this symbolically.

If s : F →| Σ G and, moreover,

• s is surjective: for each y ∈ |G| there exists x ∈ |F| such that xsy,

then we say that s is a Σ-equivalence and write s : F 'Σ G. We’ll write F 'Σ G to mean
that there exists such a Σ-equivalence.

Proposition 4.1
If C is OR {β} (as in the previous section) and F any Π-frame, then

F 'Π FC�Π.

In particular, the relation TCF witnessing this equivalence is given by

(x, (x′, γ)) ∈ TCF ⇐⇒ x = x′.

I.e. x is related by TCF to all of its “copies” (x, γ), (x, γ′), (x, γ′′), . . . in FC (considered as a
Π-frame).

Definition 4.2
Given sets X and Y , equivalence relations R and S on X and Y , respectively, and a binary
relation t ⊆ X × Y , define the relation %t ⊆ (X/R)× (Y/S) by

[x]R %t [y]S ⇐⇒ ∃x0 ∈ [x]R, y0 ∈ [y]S s.t. (x0, y0) ∈ t.

Notice: the notation suppresses the fact that %t depends on R and S. Whenever we work with
%t, we’ll need to make R and S clear from context.

Proposition 4.2
If (G,R) and (H,S) are (Π,Σ)-refined frames and

t : G →| Σ H

is a Σ-bisimulation, then
%t : G/R →| Π H/S

is a Π-bisimulation. If t is surjective, then so too is %t.4

4But not the converse: %t can be surjective without t being surjective.

Characterizing Nondeterministic Union 10

Definition 4.3
Given (Π,Σ)-refined frames (G,R) and (H,S), a strong bisimulation of refined frames is
a relation t ⊆ |G| × |H| where

• t is a Σ-bisimulation from G to H

• %t is a Π-isomorphism from G/R to H/S.

We’ll write t : (G,R) →| (H,S) to indicate this. If t furthermore is surjective, we’ll call it an
strong equivalence of refined frames and write t : (G,R) ' (H,S).

Definition 4.4
Given (Π,Σ)-refined frames (G,R) and (H,S), a relation t ⊆ |G| × |H| is said to constitute a
strong embedding (of refined frames) if

• t is total

• t respects each σ ∈ Σ: if ytz, then ‖σ‖G (y) is defined iff ‖σ‖H (z) is defined, and, if both
are defined,

(‖σ‖G (y), ‖σ‖H (z)) ∈ t.

• %t is a Π-isomorphism.

Write t : (G,R) ↪→ (H,S) to indicate that t is a strong embedding of refined frames.

Lemma 4.3
If M, N are Σ-DTMs and t : U(M)→| Σ U(N) a Σ-bisimulation between their underlying frames
which satusfies the (Base) condition:

x ∈ VM(p) ⇐⇒ y ∈ VN(p) for all x ∈ |M|, y ∈ t(x), p ∈ Φ

then for all (x, y) ∈ t,

(M, x) |= ϕ ⇐⇒ (N, y) |= ϕ for all ϕ ∈ L�©(Σ).

Theorem 4.4
If t : (G,R) ↪→ (H,S), then there is a bijection

τ : DTMs(G,R)→ DTMs(H,S)

such that for all N ∈ DTMs(G,R)

• t preserves and reflects L�©(Π) theories (pointwise and globally):

(N, y) |= ϕ ⇐⇒ (τ(N), z) |= ϕ (y ∈ |G|, z ∈ t(y), ϕ ∈ L�©(Π))

N |= ϕ ⇐⇒ τ(N) |= ϕ (ϕ ∈ L�©(Π))

• t preserves and reflects L©(Σ) theories (pointwise):

(N, y) |= ϕ ⇐⇒ (τ(N), z) |= ϕ (y ∈ |G|, z ∈ t(y), ϕ ∈ L©(Σ).)

Characterizing Nondeterministic Union 11

5 Characterization

Definition 5.1
Define

{0, 1}≤ω = {0, 1}<ω ∪ {0, 1}ω

and then let OR {≤ω} be the program constructor

• whose syntactic component takes Π to or<ω
(
Π†
)

• whose semantic component takes F to
(
FOR{≤ω},ROR{≤ω}

F

)
, where FOR{≤ω} is defined

by:

–
∣∣FOR{≤ω}∣∣ = |F| × {0, 1}≤ω;

– intFOR{≤ω} is the product topology of intF and the indiscrete topology on {0, 1}≤ω;

– for π ∈ Π†,
‖π‖FOR{≤ω} (x, S) = (‖π‖F (x), S);

– for σ0, σ1 ∈ or<ω
(
Π†
)
,

‖σ0 or σ1‖FOR{≤ω} (x, S) =


undefined if S = ε

‖σ0‖FOR{≤ω} (x, tl S) if hd(S) = 0

‖σ1‖FOR{≤ω} (x, tl S) if hd(S) = 1;

– and ROR{≤ω}
F is given as in Prop. 3.1.

Proposition 5.1
For any Π-frame F ,

Th�©

(
or<ω(Π) ;FOR{<ω},ROR{<ω}

F

)
= Th�©

(
or<ω(Π) ;FOR{≤ω},ROR{≤ω}

F

)
i.e. the language L�©(or<ω(Π)) cannot distinguish the results of the program constructors
OR {<ω} and OR {≤ω}.

Proposition 5.2
For each Π-frame F , the inclusion function

|F| × {0, 1}<ω → |F| × {0, 1}≤ω

(x, s) 7→ (x, s)

is a strong embedding(
FOR{<ω},ROR{<ω}

F

) (
FOR{≤ω},ROR{≤ω}

F

)
.

Definition 5.2
A (Π,Σ)-refined frame (G,R) is said to satisfy a set ∆ of L�©(Σ) formulas – written (G,R) |= ∆
– if (G,R) |= ϕ for all ϕ ∈ ∆.

Characterizing Nondeterministic Union 12

Definition 5.3
Given a program constructor C, a set ∆ of L�©(Πc) formulas is said to left-characterize C
if

• (FC ,RCF) |= ∆ for all Π-frames F

• For all (Π,Πc)-refined frames (G,R), if (G,R) |= ∆ then there exists a Π-frame F such
that (

FC ,RCF
)

(G,R)

Definition 5.4
Given a program constructor C, a set ∆ of L�©(Πc) formulas is said to right-characterize
C if

• (FC ,RCF) |= ∆ for all Π-frames F

• For all (Π,Πc)-refined frames (G,R), if (G,R) |= ∆ then there exists a Π-frame F such
that

(G,R)
(
FC ,RCF

)
Definition 5.5

Given a program constructor C, a set ∆ of L�©(Πc) formulas is said to bicharacterize C if

• (FC ,RCF) |= ∆ for all Π-frames F

• For all (Π,Πc)-refined frames (G,R), if (G,R) |= ∆ then there exists a Π-frame F such
that (

FC ,RCF
)
' (G,R)

Proposition 5.3
χOR{ω} (as given in Fig. 5.1) right-characterizes OR {ω}.

(OR-Typ) Maybe0(p, π0, π1) ∨ Maybe1(p, π0, π1) Typicality

(OR-Reg0) Only0(p, π0, π1) → Maybe0(q, π2, π3) Regularity 0
(OR-Reg1) Only1(p, π0, π1) → Maybe1(q, π2, π3) Regularity 1

(OR-Real0) p ∧ Only1(q, π0, π1) → ♦(p ∧ Only0(q, π0, π1)) Realization 0
(OR-Real1) p ∧ Only0(q, π0, π1) → ♦(p ∧ Only1(q, π0, π1)) Realization 1

(OR-Refresh) p → ©(skip or skip)p Refresh

(OR-Nest0) Only0(p, π0, π1) → ©skiporskip©σ0 ϕ → ©σ0orσ1ϕ Nesting 0
(OR-Nest1) Only1(p, π0, π1) → ©skiporskip©σ1 ϕ → ©σ0orσ1ϕ Nesting 1

©(skip or skip)©π0 ϕ ↔ ©π0 ©(skip or skip) ϕ

(OR-PrimInd) Only0(>, skip, abort) → ¬©π0 ¬Only0(>, skip, abort) Primitive Independence
Only1(>, skip, abort) → ¬©π0 ¬Only1(>, skip, abort)

Figure 5.1: χOR{ω}. p, q vary over Φ∪{>,⊥}, π0, π1, π2, π3 vary over Π†, σ0, σ1 vary over or<ω
(
Π†
)
,

and ϕ varies over L�©(or<ω
(
Π†
)
. Recall the abbreviations of Defn. 1.4.

TODO: Left-Characterization of OR {<ω}
TODO: Bi-Characterization of OR {n}

Characterizing Nondeterministic Union 13

6 Conclusion

A Proofs

(Lemma 3.4)
For each (Π,Σ)-refined frame (G,R), there is a bijection

κR : DTMs(G/R)→ DTMs(G,R)

such that

(M, [y]R) |= ϕ ⇐⇒ (κR(M), y) |= ϕ

M |= ϕ ⇐⇒ κR(M) |= ϕ

for all M ∈ DTMs(G/R), y ∈ |G|, ϕ ∈ L�©(Π).

Proof. —
Given M ∈ DTMs(G/R), define κR(M) by the valuation

VκR(M)(p) = {y ∈ |G| : [y]R ∈ VM(p)}

for each p ∈ Φ. The right-hand side can alternatively be written as⋃
[y]R∈VM(p)

[y]R

so each VκR(M)(p) is the union of R-equivalence classes, hence VκR(M) respects R.

To see this is a bijection, supposed we have N ∈ DTMs(G,R). Then we can define the
quotient of VN by R to be the valuation on G/R given by

[y]R ∈ VN/R(p) ⇐⇒ y ∈ VN(p).

This is well-defined because VN respects R. So we’ll write N/R for the Π-DTM on the frame
G/R with this valuation. Check that

κR(N/R) = N and κR(M)/R = M

for any N ∈ DTMs(G,R) and M ∈ DTMs(G/R), and conclude κR is a bijection.

The claim that (M, [y]R) and (κR(M), y) satisfy all the same L�©(Π) formulas can be
established by induction similar to the one used in the proof of Lemma 4.3. This uses the
fact that QR : |G| → |G| /R is open (by Lemma 3.3) and continuous (by definition of the
quotient topology), that (M, [y]R) and (κR(M), y) agree on atomic propositions (by definition
of κR), and the definition of ‖π‖G/R (for π ∈ Π) given in Defn. 3.6. Note that this result only
holds (and only makes sense) for ϕ ∈ L�©(Π), not all ϕ ∈ L�©(Σ), since G/R doesn’t have
interpretations for σ ∈ Σ \Π.

This can then quickly be used to show that the global theories of M and κR(M) agree as
well: if M |= ϕ, i.e. (M, [y]R) |= ϕ for all [y]R, then, by the previous paragraph, (κR(M), y) |=
ϕ for all y, i.e. κR(M) |= ϕ. And vice versa.

�

Characterizing Nondeterministic Union 14

(Prop. 3.5)
Let C = OR {β} for β = 0, 1, 2, . . . , <ω, ω and F be any Π-frame.

F ∼=Π FC/RCF .

Proof. —
Observe that the RCF -equivalence classes are of the form

{x} × {0, 1}β

for each x ∈ |F|. So the Π-isomorphism from I : |F| →
∣∣FC∣∣ /RCF will send x to {x}× {0, 1}β.

This is clearly a bijection.

If U ⊆ |F| is open (with respect to the topology of F), then, by definition of the product
topology, so too is U × {0, 1}β (with respect to the topology of FC). But

U × {0, 1}β = Q−1
RCF

({
{u} × {0, 1}β : u ∈ U

})
= Q−1

RCF
(I(U)).

which tells us that I(U) must also be an open subset of FC/RCF . Thus I is an open function.

For continuity, V ⊆ FC/RCF is open just in case Q−1
RCF

(V) is open. Then check that

Q−1
RCF

(V) =
{
x ∈ |F| :

(
{x} × {0, 1}β

)
∈ V

}
× {0, 1}β = I−1(V)× {0, 1}β .

Since I−1(V)× {0, 1}β is open, conclude by Lemma 2.1 that I−1(V) is open.

I respects each π ∈ Π by definition of the OR {β} program constructors and the quotient
frame: ‖π‖F (x) is defined iff ‖π‖FC (x, γ) is defined for all γ iff ‖π‖FC/RCF (I(x)) is defined. If

it is defined, then ‖π‖FC/RCF (I(x)) is I(‖π‖F (x)).

�

(Prop. 4.1)
If C is OR {β} (as in the previous section) and F any Π-frame, then

F 'Π FC�Π.

In particular, the relation TCF witnessing this equivalence is given by

(x, (x′, γ)) ∈ TCF ⇐⇒ x = x′.

I.e. x is related by TCF to all of its “copies” (x, γ), (x, γ′), (x, γ′′), . . . in FC (considered as a
Π-frame).

Proof. —
Let TCF be as defined in the statement of the claim. It is immediate to see that TCF is total.
Surjectivity follows from the fact that every element of

∣∣FC�Π

∣∣ is of the form (x, γ) for some
x ∈ |F|. For any U ⊆ |F| and V ⊆

∣∣FC�Π

∣∣, check that

TCF (U) = pr−1
1 (U) and

(
TCF
)−1

(V) = pr1(V)

so it’s quick to check (using Lemma 2.1) that TCF is open and continuous. Finally, recall that

‖π‖FC�Π (x, S) = (‖π‖F (x), S)

where the left-hand side is defined iff the right-hand side is. From this, it follows that TCF
respects π.

Characterizing Nondeterministic Union 15

�
(Prop. 4.2)

If (G,R) and (H,S) are (Π,Σ)-refined frames and

t : G →| Σ H

is a Σ-bisimulation, then
%t : G/R →| Π H/S

is a Π-bisimulation. If t is surjective, then so too is %t.5

Proof. —
The totality of %t follows from the totality of t.

To see that %t is open, observe that

%t(U) = QS(t(Q−1
R (U)))

so, by the continuity of QR, the openness of t, and the openness of QS , if U is open, so too is
%t(U). Likewise, for continuity, observe

%t−1(V) = QR(t−1(Q−1
S (V)))

so concatenate the continuity of QS , the continuity of t, and the openness of QR.

To see that %t respects each π ∈ Π, pick arbitrary (x0, y0) ∈ t witnessing ([x0]R, [y0]S) ∈ %t.
Then,

‖π‖G/R ([x0]) is defined ⇐⇒ ‖π‖G (x0) is defined (Defn. 3.6)

⇐⇒ ‖π‖H (y0) is defined (t bisimulation)

⇐⇒ ‖π‖H/S ([y0]) is defined (Defn. 3.6.)

If ‖π‖ is defined,

‖π‖G/R ([x0]) =
[
‖π‖G (x0)

]
‖π‖H/S ([y0]) =

[
‖π‖H (y0)

]
Since t is a bisimulation and ‖π‖G (x0) is defined,

‖π‖H (y0) ∈ t(‖π‖G (x0))

and it then follows from the definition of %t that(
[‖π‖G (x0)], [‖π‖H (y0)]

)
∈ %t

so (
‖π‖G/R ([x0]), ‖π‖H/S ([y0])

)
∈ %t,

as desired.

Finally, if t is surjective, then

%t(|G/R|) = QS(t(Q−1
R (|G/R|))) (above)

= QS(t(|G|)) (QR total)

= QS(|H|) (t surjective)

= |H/S| (QS surjective)

so %t is surjective too.

5But not the converse: %t can be surjective without t being surjective.

Characterizing Nondeterministic Union 16

�

(Lemma 4.3)
If M, N are Σ-DTMs and t : U(M)→| Σ U(N) a Σ-bisimulation between their underlying frames
which satusfies the (Base) condition:

x ∈ VM(p) ⇐⇒ y ∈ VN(p) for all x ∈ |M|, y ∈ t(x), p ∈ Φ

then for all (x, y) ∈ t,

(M, x) |= ϕ ⇐⇒ (N, y) |= ϕ for all ϕ ∈ L�©(Σ).

Proof. —
By structural induction on ϕ. The base case – atomic propositions – is exactly the (Base)
condition. The ∧ and ¬ inductive steps are trivial.

If (M, x) |= �ϕ, then x ∈ intM(JϕKM), i.e. there’s an open set U ⊆ |M| such that
x ∈ U ⊆ JϕK. Since t is open, we have that t(U) is open. Since x ∈ U and (x, y) ∈ t, we have
y ∈ t(U). By the inductive hypothesis,

t(U) ⊆ JϕKN

so conclude (N, y) |= �ϕ. The proof in the other direction proceeds similarly, using the
continuity of t rather than its openness.

If (M, x) |= ©σϕ for some σ ∈ Σ, then we know ‖σ‖M (x) is defined and is a ϕ-world.
Since t respects σ and (x, y) ∈ t, we have that ‖σ‖N (y) is defined and

(‖σ‖M (x), ‖σ‖N (y)) ∈ t.

By the inductive hypothesis, ‖σ‖N (y) must validate ϕ, hence

(N, y) |=©σϕ

as desired. Again, the other direction proceeds similarly. By induction, we have that the result
holds for all ϕ.

�

(Theorem 4.4)
If t : (G,R) ↪→ (H,S), then there is a bijection

τ : DTMs(G,R)→ DTMs(H,S)

such that for all N ∈ DTMs(G,R)

• t preserves and reflects L�©(Π) theories (pointwise and globally):

(N, y) |= ϕ ⇐⇒ (τ(N), z) |= ϕ (y ∈ |G|, z ∈ t(y), ϕ ∈ L�©(Π))

N |= ϕ ⇐⇒ τ(N) |= ϕ (ϕ ∈ L�©(Π))

• t preserves and reflects L©(Σ) theories (pointwise):

(N, y) |= ϕ ⇐⇒ (τ(N), z) |= ϕ (y ∈ |G|, z ∈ t(y), ϕ ∈ L©(Σ).)

Characterizing Nondeterministic Union 17

Proof. —
To define τ , first begin by noticing that %t induces a theory-preserving bijection

λ : DTMs(G/R)→ DTMs(H/S)

given by
Vλ(M)(p) = %t(VM(p)).

Check that this is indeed a bijection (since %t is a bijection) and that for any (y, z) ∈ t,

(M, [y]R) |= ϕ ⇐⇒ (λ(M), [z]S) |= ϕ

for any ϕ ∈ L�©(Π). This is an application of Lemma 4.3, since %t is a Π-bisimulation which,
by definition of Vλ(M), satisfies the (Base) condition.

Furthermore, note that
M |= ϕ ⇐⇒ λ(M) |= ϕ.

This is due to the totality and surjectivity of %t: if (M, [y]R) |= ϕ for all [y]R, then use the
result above to conclude that (λ(M), [z]S) |= ϕ for all [z]S in the image of %t, which is to say,
all [z]S . Similarly for the other direction.

Now, recalling Lemma 3.4, define

τ = κS ◦ λ ◦ κ−1
R .

The right-hand side is the composition of three bijections, and is thus a bijection. So we have
that τ is a bijection. Moreover, it preserves theories: for any (y, z) ∈ t and any ϕ ∈ L�©(Π),

(N, y) |= ϕ ⇐⇒ (κ−1
R (N), [y]R) |= ϕ (Lemma 3.4)

⇐⇒ (λ(κ−1
R (N)), [z]S) |= ϕ (above)

⇐⇒ (κS(λ(κ−1
R (N))), z) |= ϕ (Lemma 3.4)

⇐⇒ (τ(N), z) |= ϕ (defn. τ .)

as desired. We can also obtain

N |= ϕ ⇐⇒ τ(N) |= ϕ

by concatenating the above result with Lemma 3.4:

N |= ϕ ⇐⇒ κ−1
R (N) |= ϕ (Lemma 3.4)

⇐⇒ λ(κ−1
R (N)) |= ϕ (above)

⇐⇒ κS(λ(κ−1
R (N))) |= ϕ (Lemma 3.4)

as desired.

Finally, to see that t preserves and reflects L©(Σ) theories, proceed by structural induction.
The base case is already covered above, and, as usual, the ∧ and ¬ inductive steps are trivial.
So it suffices to prove the ©σ inductive step.

For some ψ ∈ L©(Σ), suppose for any (y, z) ∈ t that

(N, y) |= ψ ⇐⇒ (τ(N), z) |= ψ.

Now suppose (N, y) |= ©σψ for some σ ∈ Σ. So ‖σ‖N (y) is defined and is a ψ-world. Since
t respects σ, we get that ‖σ‖τ(N) (z) exists, is t-related to ‖σ‖N (y), and, by the inductive

Characterizing Nondeterministic Union 18

hypothesis, is a ψ-world. So (τ(N), z) |= ©σψ, as desired. The other direction proceeds
similarly: (τ(N), z) |= ©σψ implies that ‖σ‖τ(N) (z) must exist and be a ψ-world, so, since t
respects σ, we have by the inductive hypothesis that ‖σ‖N (y) must exist and be a ψ-world, so
(N, y) |=©σψ, and we’re done.

�

(Prop. 5.1)
For any Π-frame F ,

Th�©

(
or<ω(Π) ;FOR{<ω},ROR{<ω}

F

)
= Th�©

(
or<ω(Π) ;FOR{≤ω},ROR{≤ω}

F

)
i.e. the language L�©(or<ω(Π)) cannot distinguish the results of the program constructors
OR {<ω} and OR {≤ω}.

Proof. —

�

(Prop. 5.2)
For each Π-frame F , the inclusion function

|F| × {0, 1}<ω → |F| × {0, 1}≤ω

(x, s) 7→ (x, s)

is a strong embedding(
FOR{<ω},ROR{<ω}

F

) (
FOR{≤ω},ROR{≤ω}

F

)
.

Proof. —

�

B Characterizations

Definition B.1
Given a (Π,Σ)-refined frame (G,R) and worlds w,w′, write

w ≈R w′

to mean that w and w′ are R-related. We then extend this to allow either side to be undefined:
for σ, σ′ ∈ Σ, write

‖σ‖G (w) ≈R
∥∥σ′∥∥ (w′)

to mean that either

• ‖σ‖G is undefined at w and ‖σ′‖G is undefined at w′

Characterizing Nondeterministic Union 19

(OR-Typ) Maybe0(p, π0, π1) ∨ Maybe1(p, π0, π1) Typicality

(OR-Reg0) Only0(p, π0, π1) → Maybe0(q, π2, π3) Regularity 0
(OR-Reg1) Only1(p, π0, π1) → Maybe1(q, π2, π3) Regularity 1

(OR-Real0) p ∧ Only1(q, π0, π1) → ♦(p ∧ Only0(q, π0, π1)) Realization 0
(OR-Real1) p ∧ Only0(q, π0, π1) → ♦(p ∧ Only1(q, π0, π1)) Realization 1

(OR-Refresh) p → ©(skip or skip)p Refresh

(OR-Nest0) Only0(p, π0, π1) → ©skiporskip©σ0 ϕ → ©σ0orσ1ϕ Nesting 0
(OR-Nest1) Only1(p, π0, π1) → ©skiporskip©σ1 ϕ → ©σ0orσ1ϕ Nesting 1

©(skip or skip)©π0 ϕ ↔ ©π0 ©(skip or skip) ϕ

(OR-PrimInd) Only0(>, skip, abort) → ¬©π0 ¬Only0(>, skip, abort) Primitive Independence
Only1(>, skip, abort) → ¬©π0 ¬Only1(>, skip, abort)

Figure B.1: χOR{ω}. p, q vary over Φ∪{>,⊥}, π0, π1, π2, π3 vary over Π†, σ0, σ1 vary over or<ω
(
Π†
)
,

and ϕ varies over L�©(or<ω
(
Π†
)
. Recall the abbreviations of Defn. 1.4.

• both ‖σ‖G (w) and ‖σ′‖G (w′) are defined, and moreover they are R-related:(
‖σ‖G (w),

∥∥σ′∥∥G (w′)
)
∈ R.

(Prop. 5.3)
χOR{ω} (as given in Fig. B.1) right-characterizes OR {ω}.

Proof. —
We’ll address each axiom scheme in turn, proving that (a) the refined frames produced by

OR {ω} satisfy the axioms, and (b) that any (Π, or<ω
(
Π†
)
)-refined frame (G,R) validating

the axioms must be structured like an OR {ω}-augmented frame. The precise meaning of
“structured like” will ultimately be the existence of a strong embedding of refined frames.

Start with (OR-Typ). The central function of the or construct is to select one of two
programs. The main thing we’ll be doing in this proof is codifying in the object language
what it means to “select” between programs, and the high-level process for how this selection
takes place in a OR {ω}-augmented frame. For the moment, we’ll suppose the programs we’re
selecting between are primitives, π0 and π1. For some atomic proposition p, the formula
Maybe0(p, π0, π1) asserts that, as far as the truth or falsity of p is concerned, π0 or π1 might
be π0. Notably, it could be the case that π0 or π1 actually ends up being π1, but the world
resulting from π0 and the world resulting from π1 just happen to either both satisfy or both
refute p (or both π0 and π1 are undefined). The formula Maybe1(p, π0, π1), of course, encodes
the analogous statement between π1 and π0 or π1.

Requiring this axiom for all p and all π0, π1 begins to formalize our intuition that or
“selects”. Consider the following claim.

Claim 1
Given a refined frame (G,R) validating all instances of (OR-Typ), a world w of G, and

π0, π1 ∈ Π†,

‖π0 or π1‖G (w) ≈R ‖π0‖G (w) or ‖π0 or π1‖G (w) ≈R ‖π1‖G (w).

So, up to R-equivalence, π0 or π1 takes you to the same place as either π0 or π1. Note that this
‘or’ is not exclusive: the ≈R relation is an equivalence relation, so if it happens to be the case

Characterizing Nondeterministic Union 20

that ‖π0‖G (x) ≈R ‖π1‖ (x), then both disjuncts of Claim 1 will hold. To express this more
concisely, define a function

PreType : |G| ×Π† ×Π† → P({0, 1})

such that

j ∈ PreType(x, π0, π1) ⇐⇒ ‖π0 or π1‖G (x) ≈R ‖πj‖G (x) (j ∈ {0, 1})

The point of (OR-Typ) is to guarantee PreType(x, π0, π1) 6= ∅.
Refined frames produced by OR {ω} obey this requirement. Pick a world (x, γ) of FOR{ω}

and consider hd(γ). Since γ ∈ {0, 1}ω, hd(γ) must either be 0 or 1. Suppose hd(γ) = 0. Then,

‖π0 or π1‖FOR{ω} (x, γ) ≈ROR{ω}
F

(‖π0‖F (x), tl(γ)) (Defn of OR {ω})

≈ROR{ω}
F

(‖π0‖F (x), γ) (Defn of ROR{ω}
F)

≈ROR{ω}
F

‖π0‖FOR{ω} (x, γ) (Defn of OR {ω})

Identical logic with hd(γ) = 1 will yield ‖π0 or π1‖FOR{ω} (x, γ) ≈ROR{ω}
F

‖π1‖FOR{ω} (x, γ).

Either way, by some simple reasoning with ROR{ω}
F -respecting valuations, this implies that(

FOR{ω},ROR{ω}
F

)
validates all instances of (OR-Typ).

So (OR-Typ) guarantees that PreType : |G|×Π†×Π† → P({0, 1}) is well-defined and never
returns ∅. But notice that PreType depends on its primitive program arguments: a priori,
there’s nothing preventing, say,

PreType(w, π0, π1) = {0} and PreType(w, π2, π3) = {1} .

I.e. in world w, π0 or π1 is interpreted as π0 but π2 or π3 is interpreted as π3. But this is not
how OR {ω}-augmented frames operate: in a world (x, γ), either the first “disjunct” is chosen
(i.e. hd(γ) = 0, so π0 or π1 is π0 and π2 or π3 is π2) or the second one (i.e. hd(γ) = 1, so π0 or π1

is π1 and π2 or π3 is π3). The choice of program is indifferent two which programs are being
chosen between.

So now consider (OR-Reg0): it asserts that if a world validates Only0(p, π0, π1) for some
p, π0, π1, then it validates Maybe0(q, π2, π3) for arbitrary q, π2, π3. And then (OR-Reg1) makes
the analogous assertion for Only1. Assuming all instances of these axioms makes Only0 and
Only1 into powerful enough assertions to prove what we want.

Claim 2
Suppose (G,R) is a refined frame validating all instances of (OR-Typ), (OR-Reg0), and
(OR-Reg1). Then, for each world w ∈ |G|, exactly one of the following holds:

• w is a 0-world: for all π, π′ ∈ Π†,

0 ∈ PreType(w, π, π′)

• w is a 1-world: for all π, π′ ∈ Π†,

1 ∈ PreType(w, π, π′)

Characterizing Nondeterministic Union 21

Proof. —
First we show that each world must either be a 0-world or a 1-world. Suppose not. Then
we have a world w and primitive programs π0, π1, π2, π3 such that

PreType(w, π0, π1) = {0} and PreType(w, π2, π3) = {1} .

So

‖π0 or π1‖ (w) ≈R ‖π0‖ (w)

‖π0 or π1‖ (w) 6≈R ‖π1‖ (w)

‖π2 or π3‖ (w) ≈R ‖π3‖ (w)

‖π2 or π3‖ (w) 6≈R ‖π2‖ (w)

Pick p 6= q and define an R-respecting valuation by:

V (p) =

{
R(‖π0‖ (w)) if ‖π0‖ (w) is defined

R(‖π1‖ (w)) otherwise

V (q) =

{
R(‖π2‖ (w)) if ‖π2‖ (w) is defined

R(‖π2 or π3‖ (w)) otherwise

These cases are exhaustive: ‖π0‖ (w) 6≈R ‖π1‖ (w), so if ‖π0‖ (w) is undefined, ‖π1‖ (w)
must be. ‖π2‖ (w) 6≈R ‖π2 or π3‖ (w), so if ‖π2‖ (w) is undefined, then ‖π2 or π3‖ (w) must
be.

Observe that, under this valuation, w validates Only0(p, π0, π1): if ‖π0‖ (w) is defined,
then ‖π1‖ (w) is either undefined or not in V (p), so the first disjunct of Only0(p, π0, π1) is
satisfied. If ‖π0‖ (w) is not defined, then neither is ‖π0 or π1‖ (w), but ‖π1‖ (w) is defined
and in V (p) by definition, validating the second disjunct of Only0(p, π0, π1).

However, w refutes Maybe0(q, π2, π3). If ‖π2‖ (w) is defined, then by definition it is
in V (q), so w satisfies ©π2q. But ‖π2 or π3‖ (w) 6≈R ‖π2‖ (w), so w refutes ©π2orπ3q,
defeating Maybe0(q, π2, π3). On the other hand, if ‖π2‖ (w) is undefined, w refutes ©π2q
automatically. But in that case ‖π2 or π3‖ (w) is defined and is a q-world by definition of
V , again refuting Maybe0(q, π2, π3). So, no matter what, we have refuted (OR-Reg0). By
contradiction, conclude that every world must either be a 0-world or a 1-world.

Finally, let us see that w cannot be both a 0-world and a 1-world (i.e. that it cannot
be that PreType(w, π, π′) = {0, 1} for all π, π′ ∈ Π†). To see this, it suffices to consider
the program

skip or abort

If w is a 0-world, then it “selects” the first disjunct and

‖skip or abort‖ (w) = w.

On the other hand, if w is a 1-world, then it “selects” the second disjunct and

‖skip or abort‖ (w) is undefined.

Clearly, these are incompatible, so w cannot be both.

Characterizing Nondeterministic Union 22

�(Claim 2)

This guarantees that the following function is well-defined and total.

Type : |G| → {0, 1}

: w 7→

{
0 if ‖π or π′‖G (w) ≈R ‖π‖G (w) for all π, π′ ∈ Π†

1 if ‖π or π′‖G (w) ≈R ‖π′‖G (w) for all π, π′ ∈ Π†

So if w is a 0-world, Type(w) = 0; if w is a 1-world, Type(w) = 1. Let us state one helpful
lemma.

Lemma B.1
Let (G,R) be a refined frame validating all instances of (OR-Typ), (OR-Reg0), and (OR-
Reg1). Then, for any w ∈ |G| and any q ∈ Φ ∪ {>,⊥}, the following are equivalent.

(1) Type(w) = 0

(2) There exists π0, π1 ∈ Π and an R-respecting valuation V such that

((G, V), w) |= Only0(q, π0, π1).

(3) For all N ∈ DTMs(G,R),

(N, w) |=©(skip or abort)>.

And analogously for Type(w) = 1, Only1(q, π0, π1), and ¬©(skip or abort)> (or©(abort or skip)>).

As mentioned, OR {ω}-augmented refined frames will satisfy this. Worlds of the form
(x, 0γ) will be 0-worlds and worlds of the form (x, 1γ) will be 1-worlds, essentially by definition.
It’s easy to check that 0-worlds will validate every Maybe0 formula, and 1-worlds every Maybe1.
Furthermore, in light of Lemma B.1, we see that only the 0-worlds will validate Only0 formulas
and only the 1-worlds will validate Only1 formulas. So every instance of the Regularity axioms
will be satisfied on OR {ω}-augmented frames.

So we have that every world is either a 0-world or a 1-world, and not both. The next
feature of OR {ω}-augmented frames we’ll need to encode is that 0-worlds and 1-worlds “come
in pairs”: the world (x, 0γ) is a 0-world, and its “twin” (x, 1γ) is a 1-world. The existence of
both “possibilities” is the central feature of these frames. The (OR-Real) axioms will guarantee
that every R-equivalence class contains both a 0-world and a 1-world.

Claim 3
If (G,R) is a refined frame satisfying all instances of the (OR-Typ), (OR-Reg), and (OR-
Real) axioms, then every R-equivalence class U contains both a 0-world and a 1-world.

Proof. —
Pick arbitrary U . By the previous lemmas and claims about (OR-Typ) and (OR-Reg), we
have that every world w ∈ U is either a 0-world or a 1-world. We’ll suppose we have w ∈ U
with Type(w) = 0 and use (OR-Real1) to find a w′ ∈ U with Type(w′) = 1. An identical
argument can be made using (OR-Real0) to obtain a 0-world in U from the existence of a
1-world in U , completing the argument.

Let w be some arbitrary 0-world in U , p some atomic proposition. Let V be an
R-respecting valuation on G which puts

V (p) = U.

Characterizing Nondeterministic Union 23

So all (and only) the worlds in U validate p. Then, observe that the following is an instance
of (OR-Real1)

p ∧ Only0(>, skip, abort) → ♦(p ∧ Only1(>, skip, abort)).

Now, we can see that, under the valuation V , w validates the antecedent: we stipulated
V to be such that w validates p and ‖skip or abort‖ (w) = w because w is a 0-world, so we
can see that the first disjunct of Only0(>, skip, abort) is satisfied at w. Therefore w must
validate the consequent of this instance of (OR-Real1):

((G, V), w) |= ♦(p ∧ Only1(>, π0, π1)).

So w must be in the closure of JpK ∩ JOnly1(>, π0, π1)K, which implies that the latter is
nonempty. So we obtain a world

w′ ∈ JpK ∩ JOnly1(>, π0, π1)K.

However, notice that JpK = U , so w′ ∈ U . Since w′ validates Only1(>, π0, π1) for some
π0, π1 and some valuation V , we obtain from Lemma B.1

Type(w′) = 1

as desired.

�(Claim 3)

So every R equivalence class contains a world w such that Type(w) = 0 and a world w′

such that Type(w′) = 1. As mentioned, OR {ω}-augmented frames will possess this property:

the ROR{ω}
F -equivalence classes are all of the form

{(x, S) : S ∈ {0, 1}ω}

for each x ∈ |F|. This equivalence class contains a multitude of 0-worlds (all those (x, S) such
that hd(S) = 0) and 1-worlds (all those (x, S) such that hd(S) = 1). And so if p, q, π0, π1, and
the valuation are such that some 0-world (x, 0γ) validates p ∧ Only0(q, π0, π1), it is quick to
check that (x, 1γ) will validate p ∧ Only1(q, π0, π1), and vice versa. So the Realization axioms
are satisfied as well.

So far, we have only been discussing or-ing together primitive programs (plus skip and
abort), and have obtained a fairly robust description of how these frames resolve a single or.
In order to extend this to nested or’s, start by considering the program (skip or skip). In a
OR {ω}-augmented frame, executing this program takes one from (x, γ) to (x, tl(γ)), using up

a “bit” from γ, but staying within the same ROR{ω}
F -equivalence class. The axiom scheme

(OR-Refresh) encodes this for an arbitrary refined frames.

Claim 4
If (G,R) is a refined frame satisfying (OR-Refresh), then for every w ∈ |G|,

(w, ‖skip or skip‖ (w)) ∈ R.

Notice that, as a corollary of this claim, we have that ‖skip or skip‖ is total – this will be
relevant momentarily. So in any refined frame validating all the axioms so far, we have an
assignment of a “type” (0 or 1) to each world, and a function ‖skip or skip‖ which permutes
each R-equivalence class. This allows us to make the following definition.

Characterizing Nondeterministic Union 24

Definition B.2
Given (G,R) satisfying (OR-Typ), (OR-Reg), (OR-Real), and (OR-Refresh), define

FullType : |G| → {0, 1}ω

by
FullType(w)(n) = Type(‖skip or skip‖n (w))

So for each world w of such a frame, FullType(w) is an infinite6 sequence of 0’s and 1’s,
spelling out what type of worlds will be encountered by repeatedly executing skip or skip. Of
course, for OR {ω}-augmented frames, the FullType of a world is just its program constructor
state:

Proposition B.2
For any Π-frame F , any x ∈ |F|, and any S ∈ {0, 1}ω,

FullType(x, S) = S.

Now, all that’s left is for us to require that the FullType of a world in an arbitrary refined
frame specifies the behavior of nested or’s the same way as it does in an OR {ω}-augmented
frame. This will be the role of (OR-Nest) and (OR-PrimInd).

Lemma B.3
Suppose (G,R) validates all of χOR, and let σ0, σ1 ∈ or<ω

(
Π†
)
. Then,

• for all 0-worlds w0 of G,

‖σ0 or σ1‖G (w0) ≈R ‖σ0‖G (‖skip or skip‖G (w0));

• and for all 1-worlds w1 of G,

‖σ0 or σ1‖G (w1) ≈R ‖σ1‖G (‖skip or skip‖G (w1)).

So what this lemma says is that, like in OR {ω}-augmented frames, the execution of arbi-
trary σ0 or σ1 from w consists of (a) reading off the first bit of FullType(w) to see whether w
is a 0-world or a 1-world, (b) “throwing out” that bit (taking us to ‖skip or skip‖ (w), which
has FullType equal to the tail of FullType(w)), and then (c) executing σ0 or σ1 accordingly.
So we’ve almost required all the salient properties. But we need two more requirements: (1)
execution of primitives doesn’t touch the FullType at all, and (2) executing σ0 or σ1 uses up
exactly 1 “bit” (to select σ0 or σ1), plus however many bits are required to execute whichever
of the two we select. This is formally stated in the following lemma.

Lemma B.4
For any (G,R) validating all of χOR, any world w of G, and any π ∈ Π† such that ‖π‖G (w)
is defined,

FullType(‖π‖G (w)) = FullType(w).

For any σ0, σ1 ∈ or<ω
(
Π†
)
,

FullType(‖σ0 or σ1‖G (w)) =

{
FullType(‖σ0‖G (‖skip or skip‖G (w))) if Type(w) = 0

FullType(‖σ1‖G (‖skip or skip‖G (w))) if Type(w) = 1

if the worlds in question are defined.
6This is where we use the totality of ‖skip or skip‖.

Characterizing Nondeterministic Union 25

Proof. —
Let’s begin with the first claim, about how FullType is preserved in the execution of a
primitive program. To begin with, the claim that

Type(‖π‖G (w)) = Type(w)

whenever ‖π‖ (w) is defined is (almost) directly asserted by the latter two (OR-PrimInd)
axioms. They say that execution of π ∈ Π† cannot take one from a 0-world to a 1-world, or
vice versa. So execution of primitives preserves Type. To extend this to FullType, suppose
FullType(‖π‖ (w)) 6= FullType(w). Then there must be some n > 07 such that, without loss
of generality,

FullType(‖π‖ (w))(n) = 1 and FullType(w)(n) = 0.

So then let ϕ be

©(skip or skip)©(skip or skip) . . .©(skip or skip)︸ ︷︷ ︸
n−1

Only0(>, skip, abort).

We’ll refute the instance of the first (OR-PrimInd) axiom with this as our ϕ.

Regardless of the valuation, w will validate©(skip or skip)©π ϕ. Since FullType(w)(n) =
0, we have by definition of FullType that ‖skip or skip‖n (w) is a 0-world, i.e.

Type(‖skip or skip‖n (w)) = 0.

By the above, this tells us that

Type(‖π‖ (‖skip or skip‖n (w))) = 0.

And, therefore ‖π‖ (‖skip or skip‖n (w)) validates Only0(>, skip, abort), and we conclude that
w validates ©(skip or skip)©π ϕ.

However, w refutes ©π©(skip or skip) ϕ. By the hypothesis above, we know that

FullType(‖π‖ (w))(n) = 1,

i.e.
Type(‖skip or skip‖n (‖π‖ (w))) = 1.

Thus, ‖skip or skip‖n (‖π‖ (w)) is a 1-world and must refute Only0(>, skip, abort). Therefore,
we get that w refutes

©π©(skip or skip) ϕ ≡ ©π©(skip or skip)©(skip or skip) . . .©(skip or skip)︸ ︷︷ ︸
n

Only0(>, skip, abort).

So the first (OR-PrimInd) axiom is refuted at w, contrary to our assumption.

Let’s move on to the second claim. Again, the valuation is unimportant here. Suppose
without loss of generality that Type(w) = 0 and assume for contradiction that σ0, σ1 are
such that

FullType(‖σ0 or σ1‖ (w)) 6= FullType(‖σ0‖ (‖skip or skip‖ (w))).

7We know n cannot be 0, since FullType(w)(0) = Type(w).

Characterizing Nondeterministic Union 26

Again, there must be some n ∈ N at which index the two sequences differ. Assume without
loss of generality that

FullType(‖σ0 or σ1‖ (w))(n) = 0 and FullType(‖σ0‖ (‖skip or skip‖ (w)))(n) = 1.

We’ll refute the following instance of (OR-Nest0):

Only0(>, skip, abort) → ©(skip or skip)©σ0 ϕ → ©σ0orσ1ϕ

where ϕ is given as

©(skip or skip)©(skip or skip) . . .©(skip or skip)︸ ︷︷ ︸
n

Only1(>, skip, abort).

First, observe that w validates Only0(>, skip, abort), since it is a 0-world. Next, we see
that w validates ©(skip or skip)©σ0 ϕ. To see this, note that

FullType(‖σ0‖ (‖skip or skip‖ (w)))(n) = 1

means ‖skip or skip‖n (‖σ0‖ (‖skip or skip‖ (w))) is a 1-world, and therefore satisfies Only0(>, skip, abort).
It follows that ‖σ0‖ (‖skip or skip‖ (w)) validates ϕ, so w validates ©(skip or skip)©σ0 ϕ.

Finally, we show that w refutes ©σ0orσ1ϕ. This follows from the assumption that
FullType(‖σ0 or σ1‖ (w))(n) = 0. Again, we unfold this assumption to see that

‖skip or skip‖n (‖σ0 or σ1‖ (w)) is a 0-world

and thus ‖σ0 or σ1‖ (w) cannot validate ϕ.

So we have that w validates Only0(>, skip, abort) and ©(skip or skip) ©σ0 ϕ but not
©σ0orσ1ϕ, contrary to our assumption of (OR-Nest0). So conclude

FullType(‖σ0 or σ1‖ (w)) = FullType(‖σ0‖ (‖skip or skip‖ (w))).

�

This marks the last structural lemma we need to prove, and we can now finally conclude
with our main result. To finish off the “soundness” portion of our proof – that any OR {ω}-
augmented frame validates χOR – it just remains to check (OR-Nest) and (OR-PrimInd). But
this is pretty quick: for a 0-world (x, 0γ) in an OR {ω}-augmented frame,

‖σ0 or σ1‖ (x, 0γ) = ‖σ0‖ (x, γ) = ‖σ0‖ (‖skip or skip‖ (x, 0γ))

so (OR-Nest0) will automatically be satisfied, and likewise for (OR-Nest1). For the latter two
(OR-PrimInd) axioms: the fact that ‖π‖ (x, S) is defined as (‖π‖ (x), S), i.e. the S is left alone
completely, means that executing primitives from a 0-world will always land you in a 0-world,
and from a 1-world will always land in a 1-world. For the first (OR-PrimInd) axiom, one can
easily verify that, in a OR {ω}-augmented frame,

‖π‖ ◦ ‖skip or skip‖ = ‖skip or skip‖ ◦ ‖π‖

satisfying the axiom. We have therefore proved the soundness part.

The “completeness” part – that every χOR-satisfying (G,R) can be embedded into an
OR {ω}-augmented frame, is stated as the following claim.

Characterizing Nondeterministic Union 27

Claim 5
Given (G,R) validating all of χOR, the function

t : |G| →
∣∣∣(G/R)OR{ω}

∣∣∣
: w 7→ ([w]R,FullType(w))

is a strong embedding of refined frames

(G,R)
(

(G/R)OR{ω},ROR{ω}
G/R

)
Proof. —

For convenience of notation, let F denote G/R.

First of all, the totality of t follows from the (already proven) totality of FullType: each
world w of G has a well-defined FullType(w) ∈ {0, 1}ω, hence t is well-defined on every w.

To see that %t : F → FOR{ω}/ROR{ω}
F is a Π-iso, observe that %t is just the iso-

morphism of Prop. 3.5: each world [w]R ∈ |F| = |G| /R is identified with the ROR{ω}
F -

equivalence class of worlds of the form ([w]R, S) for S ∈ {0, 1}ω.

Finally, we must prove that t respects all σ ∈ or<ω
(
Π†
)
. We do this by structural

induction on σ. As our base case, pick π ∈ Π† and w ∈ |G|. By definition of quotient,
‖π‖G/R ([w]R) is defined iff ‖π‖G (w) is defined. By definition of OR {ω}-augmentation,

‖π‖FOR{ω} ([w]R, S) is defined (for any S ∈ {0, 1}ω) iff ‖π‖G/R ([w]R) is defined. If these
are all defined, then

t(‖π‖G (w)) =
([
‖π‖G (w)

]
R,FullType(‖π‖G (w))

)
(Defn. t)

=
([
‖π‖G (w)

]
R,FullType(w)

)
(Lemma B.4)

= (‖π‖F ([w]R),FullType(w)) (Defn. quotient)

= ‖π‖FOR{ω} ([w]R,FullType(w)) (Defn. OR {ω})
= ‖π‖FOR{ω} (t(w)) (Defn. t)

as desired.

Now inductively suppose for some σ0 that for any w ∈ |G| that ‖σ0‖G is defined at w
iff ‖σ0‖FOR{ω} is defined at t(w), and if they are defined,

t(‖σ0‖G (w)) = ‖σ0‖FOR{ω} (t(w))

and likewise for σ1. Then pick an arbitrary w ∈ |G| and assume without loss of generality
that w is a 0-world. So then, by Lemma B.3,

‖σ0 or σ1‖G (w) ≈R ‖σ0‖G (‖skip or skip‖G (w)). (*)

For convenience, write w′ for ‖skip or skip‖G (w). Then notice by definition of FullType that

FullType(w′) = tl(FullType(w))

and thus, recalling that w and w′ must be R-related,

t(w′) = ([w]R, tl(FullType(w))) = ‖skip or skip‖FOR{ω} (t(w)). (**)

Characterizing Nondeterministic Union 28

So then we have the following chain of reasoning: ‖σ0 or σ1‖G (w) is defined iff ‖σ0‖G (w′)
is defined (by (*)); ‖σ0‖G (w′) is defined iff ‖σ0‖FOR{ω} (t(w′)) is defined (by inductive
hypothesis); and ‖σ0‖FOR{ω} (t(w′)) is defined iff ‖σ0 or σ1‖FOR{ω} (t(w)) is defined (by
(**) and definition of OR {ω}). So all that remains to show is that t(‖σ0 or σ1‖G (w))
is ‖σ0 or σ1‖FOR{ω} (t(w)) if both are indeed defined.

First we show that they’re in the same ROR{ω}
F -equivalence class. To begin, note

‖σ0 or σ1‖FOR{ω} (t(w))

= ‖σ0‖FOR{ω} (‖skip or skip‖FOR{ω} (t(w)))

= ‖σ0‖FOR{ω} (t(w′)) (**)

= t(‖σ0‖G (w′)). (IH)

Now, ‖σ0‖G (w′) and ‖σ0 or σ1‖G (w) are R-related (*), and thus t will send them into the

same ROR{ω}
F equivalence class. Thus,

‖σ0 or σ1‖FOR{ω} (t(w)) ROR{ω}
F t(‖σ0 or σ1‖G (w)).

So, in order to show that ‖σ0 or σ1‖FOR{ω} (t(w)) = t(‖σ0 or σ1‖G (w)), it suffices to show

FullType(‖σ0 or σ1‖FOR{ω} (t(w))) = FullType(t(‖σ0 or σ1‖G (w))).

Notice that, by definition, t preserves FullType: FullType(t(w)) = FullType(w). Note that
the FullType on the right-hand side of this equation is calculated according to how or’s
are resolved in G, whereas the left-hand FullType is calculated according to how FOR{ω}

resolves or (see Prop. B.2). Then,

FullType(‖σ0 or σ1‖FOR{ω} (t(w)))

= FullType(t(‖σ0‖G (w′))) (‖σ0 or σ1‖FOR{ω} (t(w)) = t(‖σ0‖G (w′)))

= FullType(‖σ0‖G (w′))) (t preserves FullType)

= FullType(‖σ0 or σ1‖G (w)) (Lemma B.4)

So ‖σ0 or σ1‖FOR{ω} (t(w)) areROR{ω}
F -related and have the same FullType. By how OR {ω}-

augmented frames are structured, this implies they are equal.

So conclude that for every w and every σ ∈ or<ω
(
Π†
)
, ‖σ‖G (w) is defined iff ‖σ‖FOR{ω} (t(w))

is defined and, if both are defined,

t(‖σ‖G (w)) = ‖σ‖FOR{ω} (t(w)).

So t respects each σ, and therefore constitutes an embedding of refined frames.

�(Claim 5)

And, at long last, we’re done.

�

	Introduction and Syntax
	Dynamic Topological Logic and Union Augmentation
	Refinement
	Bisimulation
	Characterization
	Conclusion
	Proofs
	Characterizations

