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Abstract

1 Introduction and Syntax

Definition 1.1
Given any set II, define the following supersets of II:

or=U(TI) := 11
ors!(I):=TNU{morn’ : m, 7' € I}
or="*I(II):=TU {ooro’ : 0,0’ € or="(II)} (n € N)
or<“(II) := U or="(II)
neN
For any n > 0, we’ll sometimes write or<"(II) for orgn*l(H).

Definition 1.2
Given a set X, let

st := S U {skip, abort} .

Definition 1.3
For a fixed set ® of atomic propositions and a set ¥ of program names, define the language
L0o(X) by the grammar

o, =plop|e Ay |Op | Osp. (pe®, oel)

We’ll make use of the standard (classical) abbreviations, e.g. ¢ — 9 for =(p A =), T for
=(p A —p), and Oy for —C—.

Definition 1.4
We’ll use the abbreviations

Maybeo(pvﬂ'()?ﬂ—l) = Owop < OTI’() orm P
Maybel <p77T077TI) = O7r1p A OTI’() orm P

and

OnIYO(p7 770771'1) = (Oﬂop A Om DA Owo ormp) \ (_‘ OTI’()p A Omp AN OTK‘() or 71 p)
Onlyl(p77r07ﬂ-1) = (_‘ Oﬂ'()p A O?Tlp A Owoormp) \ (O?Top A _'O7T1 p A _‘Oﬂoorﬂ'l p)
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2 Dynamic Topological Logic and Union Augmentation

Definition 2.1
A topology on a nonempty set X is given in one of two equivalent ways:

e By a function
int: P(X) —» P(X)

sending each subset A C X to its interior, such that the following axioms are satisfied.

(Intl) int(X) =X

(Int2) int(A) C Aforall AC X

(Int3) int(int(A)) = int(A) for all A C X

(Intd) int(A N B) = int(A) Nint(B) for all A, B C X

e By a collection 7 of subsets of X (7 C P(X)) satisfying
(Topl) 0, X €7

(Top2) If A,BeT,then ANBerT

(Top3) If A; € T foralli € I, (U;e; Ai) €7

The elements of 7 are known as open sets, or are said to be open with respect to .

The equivalence of these definitions can be seen by putting intx (A) to be the set of those a € A
such that a € U C A for some U € 7, or conversely by defining 7 to be the set of fixed points
of inty (those subsets A C X such that intx(A) = A). Throughout, we shall use whichever
form is most convenient.

Definition 2.2
Given sets X,Y and topologies 7x, 7y on them, a relation R C X x Y is

e open if A € 7x implies R(A) € 1y
e continuous if B € 1y implies R~(B) € 7x

Definition 2.3
Let X and Y be sets, with topologies 7x and 7y. The product topology of 7x and 7y is
the least' topology on X x Y containing all sets of the form

UxV for some U € 7x, V € 7y.

Equivalently, the subsets of W C X x Y which are open with respect to the product
topology are those of the form
U Ui X Vz

i€l

where U, € 7x, V; € 7y for all i € I.

In the sense of containment: 71 is “less than” 7 if A € 71 implies A € 12, i.e. 71 C 7. This is often indicated
by saying 71 is coarser than 72", or “ro is finer than m”. We are defining the product topology to be the coarsest
topologysatisfying the condition above.
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Definition 2.4
For any set X, the indiscrete (or trivial) topology on X is the topology

T={0,X}.

Lemma 2.1
For sets X and Y equipped with topologies, the projection functions

rh:XxY—X pro: X XY =Y
defined by pry(z,y) = = and pry(z,y) = y are open and continuous.

Definition 2.5
For ¥ some set, a ¥ dynamic topological model (“3-DTM”) 9t consists of the following.

o A set ||
e A topology intgy : P(|9]) — P(|9M1]) on the set |9
e For each o € 3, a partial function
lollgn : 190%] — 9]
e A function
ng P — P(Dﬁ‘)
where ® is some give set of atomic propositions.

Definition 2.6
For any set ¥ and any >X-DTM 90, define:

o [|skip|lgy : [T — |9M] is the identity function taking x € |91 to itself;

o |labort||gy, : [ — |9M] is the function which is defined nowhere: ||abort||qy () is undefined
for all z € |M|.

Definition 2.7
For a X-DTM 90, define the interpretation of Lo (ET) in 9M,”

[Ian : L0 (3F) = P(jm)
by structural recursion on ¢:

[plon = Vor(p) (pec®)
[=¢lan = 9%\ [¢]an

]
|
[ A Plon = []on O [¢/]om
]
Jom

§

[O¢]on = inton ([]on)
[[OUSO

For z € |9M|, write (M, z) = ¢ to mean that x € [¢]on. For instance, (M, z) = Orp if and
only if |o|lgy () is defined and (M, ||o||on (2)) = ¢. Furthermore, write M = ¢ to indicate
that [¢]on = [9].

We may omit the 9T subscript when 9t is clear from context.

= [lolla ([elom)

2Note we are interpreting Loo (ET), not just Lon(X), care of Defn. 2.6.
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Definition 2.8
Write >X-DTM for the class of all ¥-DTMs.

For any © and any X C O, we can view ©-DTMs as X-DTMs simply by “forgetting” about
their interpretations |6 for 6§ € © \ X. We denote this as

(=)lg: ©-DTM — X-DTM
i.e. writing Mly € X-DTM for MM € ©-DTM.

Definition 2.9 (DTM-to-DTM Program Constructor)
A program constructor C' consists of

e A rule (called the syntactic component of C') assigning to each set IT a set II¢. For all
the examples we’ll deal with here, I1¢ will be a superset of II.

e For each II, a function (called the semantic component of C)
(=)¢ : II-DTM — II°-DTM
so, for each II-DTM 9, M is a II-DTM.

Definition 2.10
Define {0,1}<% to be the set of finite binary strings s,

su=¢€]|0s| Ls.

¢ is called the empty string, and all other elements of {0, 1} are called nonempty. We generally
write nonempty strings with the € at the end omitted.

Define some standard operations on strings.
e Define the length of a string s € {0,1}~% recursively by:

len(e) =0
len(0s) = 1+ len(s)
len(1s) = 1+ len(s)

Write {0,1}" for the set of those s € {0,1}~ such that len(s) = n, and analogously for
{0,1}<™ and {0,1}=".

e For s € {0,1}" and t € {0,1}", write st € {0,1}™*" for the concatenation of s and t.

e Define the head and tail of nonempty strings:

hd(0s) =0
hd(1s) =1
tl(0s) = s
tl(1ls) = s.

Clearly, len(tl(s)) = len(s) — 1, so we could say
hd: {0,1}""™ = {0,1}  and  tl:{0,1}""' = {0,1}"

for each n.
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Definition 2.11
Define {0,1}* to be the set of infinite binary streams S,

S:N—{0,1}.

Define the head and tail of a stream:
hd : {0,1}* — {0,1}
: S~ S(0)
tl: {0,1}* — {0,1}*
S (i S3E+1)).
The last line means that tI(S)(:) = S(i + 1) for all S € {0,1}* and all < € N.

Definition 2.12
For each natural number n, the n-fold nondeterministic union program constructor,
denoted OR {n}, is a program constructor

e Whose syntactic component takes II to or="(II") (recall Defn. 1.1)
e Whose semantic component takes 9 to MOR} | where MOR{™} is defined by:
— [9ORMH = 9] x {0,1}=" (Recall Defu. 2.10);
— intgpor(ny is the product topology of intgy and the indiscrete topology on {0, 1}3”;
~ Irllgmorcn (@,8) = (Illgy (), ) for any = € IT';
— for any og, 01 € or<" (HT),
|00 or o1 |gnoriny (x,€) is undefined,
loo or a1 [|gnoriny (2, 08) = [|lo0lonoriny (2, ),
loo or a1 [|gnoreny (2, 15) = |1 [lonoreny (2, 8);

— and for p € P,
(x,5) € Voporiny (p) <=z € Vor(p).

Definition 2.13
The limited nondeterministic union program constructor, denoted OR {<w}, is a pro-
gram constructor

e Whose syntactic component takes II to or<¥ (HT)
e Whose semantic component takes M to MORI<w} where MORI<W} ig defined by:
— oo | = o] x {0, 1}
— intgpor{<wy is the product topology of intgy and the indiscrete topology on {0, 1}
~ |nllgor<ar (@,8) = (I7llgy (2), 5) for any 7 € II';
— for any 09,01 € or<¢(IIf),
|0 or o1 |gpori<wy (2, €) is undefined,

loo or o1 [[gpori<wy (,08) = [lovllgpori<wr (),

|oo or o1lgnori<wy (z,18) = [[o1[|gnori<wy (2, 5);



Characterizing Nondeterministic Union 6

— and for p € P,
(z,5) € Vopori<wy (p) <=z € Von(p).

The unlimited nondeterministic union program constructor, denoted OR {w}, is a
program constructor

e Whose syntactic component takes IT to or<¥ (HT) (note that this still only allows for
arbitrary finite nesting of ors)

e Whose semantic component takes 0 to MOR} where MORI} is defined by:
- [PROR)| = o x {0,1)*
— intgyporw) is the product topology of intgy and the indiscrete topology on {0, 1}
= [Illgnorier (2, S) = (I7llgn (), S) for € 1IF;

— for any 09,01 € or<*(II'),

I

0 lgnorie; (2,1l S)  if hd(S) =0
1

or w l’,S -
HO’O Ul”g)ﬁOR{ } ( ) {HUIHWOR{M} (m,tl S) if hd(S) =

— and for p € P,
(2,5) € Vaporiwy () <=z € Var(p).

Note 2.1
For p=0,1,2,...,<w,w, the definition of

||skip|| orgs) and ||abort|| zorys)

given by Defn. 2.12/Defn. 2.13 matches the one given for arbitrary DTMs in Defn. 2.6.

3 Refinement

Definition 3.1
Write Y-Frame for the class of all Y-frames.

For any ¥, we have the class function
U :X-DTM — >-Frame

sending each X-DTM to its underlying >-frame, i.e. “forgetting” about the valuation function
Von. The fibers of this function we’ll denote as:

DTMs(F) := {9 € S-DTM : U(M) = F}.

Definition 3.2 (Frame-to-Frame Program Constructor)
A program constructor (of frames) C consists of

e A rule (called the syntactic component of C) assigning to each set II a set II°.
e For each II, a function (called the semantic component of C')
(=)¢ : II-Frame — II°-Frame

so, for each IT-frame F, FC is a II°-frame.
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Definition 3.3
Given II C ¥ and a ¥-frame G, a II-refinement relation on G is a binary relation R C |G| x |G|
such that the following hold.

(RR1) R is an equivalence relation.
(RR2) For all w € 1, if x, 2’ are points of G such that xRz’, then
[7llg () is defined <= ||7[|g (2') is defined

and, if they are defined,
(Imllg (z), lImllg (2')) € R.

(RR3) If A C |G| is open with respect to intg, then the set
R(A):={z € |G| : Ja € As.t. zRa}
is also open with respect to intg.

Definition 3.4
Given sets IT C X, a (I, ¥)-refined frame is a pair (G, R) where G is a ¥-frame and R is a
II-refinement relation on G.

A valuation function V : & — P(|G]) is said to respect R if for any atomic proposition
p € ® and any pair of R-related G-worlds, (z,2’) € R, we have
reV(p) << 2 eV(p).

Write DTMs(G, R) for the set of £-DTMs 9t such that U(91) = G and Vi respects R. A refined
frame (G,R) is said to satisfy a formula ¢ € Lo (E) — written (G,R) = ¢ — if

NE for all 9t € DTMs(G, R).
Finally, write
Thgo(z, Q,R)
for the set {¢ € Lop(X) : (G, R) = ¢}

Proposition 3.1
Let C be OR{pB} for  =0,1,2,...,<w,w, and F an arbitrary II-frame. Then the relation Rg
defined on ‘]-"C‘ by
(z,VRE(z',4) = z=2a
is a IT-refinement relation on FC.
Lemma 3.2
For C', F as in Prop. 3.1, the following equality holds.
DTMs (F¢, RE) = {M : M € DTMs(F)}

Definition 3.5
Given a topology 7 on a set X and an equivalence relation R C X x X, define the quotient
topology to be the greatest topology on X/R (the set of R-equivalence classes) such that the
function

QR:X—)X/R
z—[z]={2' € X : zRa}
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is continuous.

Equivalently, the quotient topology is uniquely identified by the following property: a set
V' C X/R is open with respect to the quotient topology if and only if Ql_%l(V) €.

Lemma 3.3
The quotient function Qi : X — X/R is open with respect to the topology 7x on X and the
quotient topology 7x/r on X/R iff the equivalence relation R satisfies (RR3):

if A€ 7x, then R(A) € Tx.

Definition 3.6
Given a (II, X)-refined frame (G, R), let the quotient frame of G by R be the II-frame G/R
defined by

e [G/RI=I[G]/R
e intg R is the quotient topology of intg by R

e For each m € IT and z € |G|,

I7llg/m ([2]) = [I7llg ()]
which is well-defined by (RR2).?

Lemma 3.4
For each (II, ¥)-refined frame (G, R), there is a bijection

kr : DTMs(G/R) — DTMs(G,R)

such that
M ylr) Fe = (r(M),y) Fe
MEe = mMEe
for all M € DTMs(G/R), y € |G|, ¢ € Loo(II).
Definition 3.7
Given YX-frames F and G, a ¥-isomorphism is a function [ : |F| — |G| which
e is bijective;

e respects each o € X: if I(z) = y then ||o||z (x) is defined iff ||o||g (y) is defined, and, if
both are defined,

I(llollz (@) = lollg (v);

e is continuous and open with respect to intr and intg.

We write F =5, G to mean that there is such a Y-isomorphism between F and G.

Proposition 3.5
Let C = OR{g} for 5=0,1,2,...,<w,w and F be any II-frame.

F = FO/RE.
31f [|7llg (x) is undefined for some z, then, by (RR2), ||7||g (') is undefined for all 2’ € [z]. In this case, Defn. 3.6
specifies [|7|g, to be undefined at [z].
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4 Bisimulation

Definition 4.1
Given Y-frames F and G, a binary relation s C |F| x |G| is said to be a 3-bisimulation (of
frames) if

e s is total: for each x € |F| there exists y € |G| such that xsy.
e s is open and continuous with respect to inty and intg

e srespects each o € X: if zsy, then |o|| - (%) is defined iff [|o||; (y) is defined, and, if both
are defined,

(ol (), llolig (v) € s.

We write s : F +x G to indicate this symbolically.

If s : F +x» G and, moreover,
e s is surjective: for each y € |G| there exists x € |F| such that zsy,

then we say that s is a Y-equivalence and write s : F ~y G. We’ll write F ~y G to mean
that there exists such a -equivalence.

Proposition 4.1
If C'is OR{A} (as in the previous section) and F any II-frame, then

f 11 .FCrH.

In particular, the relation TJQ witnessing this equivalence is given by

(z,(2', 7)) eT¢ — z=2

Le. z is related by T¢ to all of its “copies” (z,7), (,7'), (z,7"), ...in F (considered as a
[I-frame).

Definition 4.2
Given sets X and Y, equivalence relations R and S on X and Y, respectively, and a binary
relation ¢ C X x Y, define the relation %t C (X/R) x (Y/S) by

[x]r %t [y]ls <= 3Jxo € [z]r, Yo € [yls s.t. (zo,y0) € t.

Notice: the notation suppresses the fact that %t depends on R and S. Whenever we work with
%t, we’ll need to make R and S clear from context.

Proposition 4.2
If (G,R) and (#H,S) are (II, ¥)-refined frames and

t:G s H

is a X-bisimulation, then
%t - Q/R =11 7’[/8

is a II-bisimulation. If ¢ is surjective, then so too is %t."

4But not the converse: %t can be surjective without ¢ being surjective.
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Definition 4.3
Given (II, ¥)-refined frames (G, R) and (H,S), a strong bisimulation of refined frames is
a relation t C |G| x |H| where

e { is a X-bisimulation from G to H

e %t is a Il-isomorphism from G/R to H/S.

We'll write ¢t : (G, R) + (H,S) to indicate this. If ¢ furthermore is surjective, we’ll call it an
strong equivalence of refined frames and write ¢t : (G, R) ~ (H,S).

Definition 4.4
Given (II, ¥)-refined frames (G,R) and (H,S), a relation t C |G| x |H| is said to constitute a
strong embedding (of refined frames) if

e ¢ is total

e t respects each o € ¥: if ytz, then [|o||g (y) is defined iff |[o||,, (2) is defined, and, if both
are defined,

(lellg (W); llolly (2)) € t.

o %t is a Il-isomorphism.

Write ¢ : (G,R) — (H,S) to indicate that ¢ is a strong embedding of refined frames.

Lemma 4.3
If M, 9t are X-DTMs and ¢ : U(IN) +x U(N) a X-bisimulation between their underlying frames
which satusfies the (Base) condition:

x € Vom(p) < ye V) forallz € M|,y €t(x),pe P
then for all (z,y) € t,
Mz)Ee = Oy kEe for all ¢ € Lop ().

Theorem 4.4
Ift:(G,R) — (H,S), then there is a bijection

7:DTMs(G,R) — DTMs(H, S)

such that for all 9t € DTMs(G, R)

e ¢ preserves and reflects Lo (II) theories (pointwise and globally):

My Fe <= (TM),2)F¢ (y €G], z € t(y), ¢ € LooD))
NEp = MEy (¢ € Loo(II))

e ¢ preserves and reflects £ (X) theories (pointwise):

My Ee <= (TM),2)Fe (y €G], 2z € t(y), p € Lo(X).)



Characterizing Nondeterministic Union 11

5 Characterization

Definition 5.1
Define

{0,1}=¥ = {0,1}~* U {0,1}*

and then let OR {<w} be the program constructor

e whose syntactic component takes II to or<¥ (HT)

e whose semantic component takes F to (]—'OR{S“’},R?TR{SW}), where FOR{=w} ig defined
by:

— |FORE=H = 7] x {0, 1},

— int ror(<w} is the product topology of intz and the indiscrete topology on {0, 1}§"J;

— for w € IIf,
7l pori<ey (2,5) = (7l z (), 5);
— for 0¢,01 € or<¥ (HT),
undefined if S=e
||00 or 0'1”]:OR{§¢,.;} (1‘, S) = HO’()H]_-OR{SUJ} (m,tl S) if hd(S) =0
|o1] pori<wy (z,t1 S) if hd(S) = 1;
— and RgR{gw} is given as in Prop. 3.1.

Proposition 5.1
For any Il-frame F,

Thao <°r<w(H);}—OR{@}’RgR{@}) = Thoo (or<‘*’(H);fOR{S“},RgR{Sw})

i.e. the language Lo (or<“(II)) cannot distinguish the results of the program constructors
OR{<w} and OR {<w}.

Proposition 5.2
For each II-frame F, the inclusion function

|F| x {0,1}<% — | F| x {0,1}=¥
(z,5) — (x, )

is a strong embedding
OR{<w OR{<w
(/—_'()R{<w}, R {< }> ¢ (/‘:'()R{<w}7 R {< }> .

Definition 5.2
A (II, ¥)-refined frame (G, R) is said to satisfy a set A of L (2) formulas — written (G, R) = A
—if (G,R) = ¢ for all p € A.
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Definition 5.3
Given a program constructor C, a set A of Lo (I1¢) formulas is said to left-characterize C
if

o (FY R%) | A for all II-frames F

e For all (IT, II¢)-refined frames (G,R), if (G, R) = A then there exists a II-frame F such
that
(F¢RE) —— (G,R)

Definition 5.4
Given a program constructor C, a set A of Lo (II¢) formulas is said to right-characterize
Cif

o (FY R%) [ A for all II-frames F

e For all (IT, II¢)-refined frames (G, R), if (G, R) = A then there exists a II-frame F such
that
(6. R) —— (FC,RS)

Definition 5.5
Given a program constructor C, a set A of Lo (II¢) formulas is said to bicharacterize C if

o (FY R%) | A for all II-frames F

e For all (IT, II¢)-refined frames (G,R), if (G, R) = A then there exists a II-frame F such
that
(F9,RF) = (G, R)

Proposition 5.3
XOR{w} (as given in Fig. 5.1) right-characterizes OR {w}.

(OR-Typ) Maybe(p, mo, 1) V Maybe, (p, mo, 1) Typicality
(OR-Reg0) Onlyy(p, mo, 1) — Maybe(q, w2, 73) Regularity 0
(OR-Regl) Only, (p, 0, m1) — Maybe,(q, w2, 73) Regularity 1
(OR-Real0) p A Only; (g, m,m1) — O(p A Onlyy(g,m0,71)) Realization 0
(OR-Reall) p A Onlyy(q, 70, m1) — O(p A Only,(q,m0,71)) Realization 1
(OR-Refresh) P — Oskip or skip)P Refresh
(OR-Nest0) Onlyy(p, m0, 1) — Oskiporskip Ooo @ — Oogorer @ Nesting 0
(OR-Nest1) Only; (p, 70, m1) — Oskiporskip Oo1 @ — Oogoroy @ Nesting 1

O(skip or skip) Oﬂ'o P = Oﬂ'o O(skip or skip) ¥
(OR-PrimInd) Onlyy (T, skip,abort) — = (O, =Only,y (T, skip, abort) Primitive Independence
Only, (T,skip,abort) — = Oz, =Only; (T, skip, abort)

Figure 5.1: XoR{w}- P»q vary over @U{T, L}, mo, 71, 72, 73 vary over It, 0g, o1 vary over or<¥ (HT),
and ¢ varies over L (or<¥(IIT). Recall the abbreviations of Defn. 1.4.

TODO: Left-Characterization of OR {<w}
TODO: Bi-Characterization of OR {n}
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6 Conclusion

A Proofs

(Lemma 3.4)
For each (II, ¥)-refined frame (G, R), there is a bijection

kr : DTMs(G/R) — DTMs(G,R)
such that

M yIr) Fe = (kr(M),y)
MEe = mrMEY

for all M € DTMs(G/R), y € |G|, ¢ € Loo(II).

F

Proof. —
Given 9t € DTMs(G/R), define kg (9) by the valuation

Virem)(P) ={y €G] : [ylr € Var(p)}

for each p € ®. The right-hand side can alternatively be written as

U [vlr

[ylr €Von (p)

so each Vi (om) (p) is the union of R-equivalence classes, hence Vir (om) Tespects R.

To see this is a bijection, supposed we have 9 € DTMs(G,R). Then we can define the
quotient of Vi by R to be the valuation on G/R given by

Ylr € Voyr(p) <<= y€ Vnlp).

This is well-defined because Viq respects R. So we’ll write 91/R for the II-DTM on the frame
G/R with this valuation. Check that

KR(DM/R) =N and RR(OM)/R =M

for any 91 € DTMs(G,R) and 9t € DTMs(G/R), and conclude kg is a bijection.

The claim that (9, [y|r) and (kr(M),y) satisfy all the same Lo (II) formulas can be
established by induction similar to the one used in the proof of Lemma 4.3. This uses the
fact that Qr : |G| — |G| /R is open (by Lemma 3.3) and continuous (by definition of the
quotient topology), that (9, [y|r) and (kg (9N),y) agree on atomic propositions (by definition
of k), and the definition of ||7||g % (for 7 € II) given in Defn. 3.6. Note that this result only
holds (and only makes sense) for ¢ € Lo (II), not all ¢ € Lo (X), since G/R doesn’t have
interpretations for o € ¥\ I

This can then quickly be used to show that the global theories of 9t and kg (91) agree as
well: if M |= ¢, i.e. (M, [y]r) E ¢ for all [y]r, then, by the previous paragraph, (kg (M), y) =
@ for all y, i.e. KR(M) = . And vice versa.
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(Prop. 3.5)
Let C = OR{g} for =0,1,2,...,<w,w and F be any II-frame.

F = FO/RG.
Proof. —
Observe that the Rg—equivalence classes are of the form
{z} x {0.1)"

for each = € | F|. So the Il-isomorphism from I : |F| — |F¢| /R% will send  to {z} x {0, 1}°,
This is clearly a bijection.

If U C |F| is open (with respect to the topology of F), then, by definition of the product
topology, so too is U x {0, 1}6 (with respect to the topology of F¢). But
B_ -1 B . _ -1
Ux 0,15 = Qg ({{u} x 0.1} - weU}) = QpL.u)).

which tells us that I(U) must also be an open subset of F¢/ R]CE Thus I is an open function.
For continuity, V C F¢/ Rg is open just in case Q;zé(V) is open. Then check that

Qrt(V) = {:): e |7 - ({:):} % {0, 1}5) = v} {0,112 = 171V x {0,1)7.

Since I71(V)) x {0,1}? is open, conclude by Lemma 2.1 that I71(V) is open.

I respects each 7 € II by definition of the OR {3} program constructors and the quotient
frame: [|7|| z (x) is defined iff ||7|| zc (x, ) is defined for all  iff H7T”]_—C/Rg (I(z)) is defined. If
it is defined, then H7r||f0/ch__ (I(x)) is I(||7| £ (x)).

(Prop. 4.1)
If C'is OR{A} (as in the previous section) and F any II-frame, then
F 11 ./TC h—[.

In particular, the relation Tg witnessing this equivalence is given by

(z,(2' 7)) e T¢  «— z=2.

Le. z is related by T¢ to all of its “copies” (z,7), (z,7'), (z,7"), ...in FC (considered as a
II-frame).

Proof. —
Let Tg be as defined in the statement of the claim. It is immediate to see that T j—? is total.
Surjectivity follows from the fact that every element of ‘.7-" ¢ [H} is of the form (z,7) for some
z € |F|. For any U C |F| and V C |F%y|, check that
_ -1
TE(U) =pri'(U)  and  (TF) (V) = pry(V)

so it’s quick to check (using Lemma 2.1) that T]g is open and continuous. Finally, recall that

17l ey (2:.8) = (Il 7 (2),.9)

where the left-hand side is defined iff the right-hand side is. From this, it follows that TJQ
respects .
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(Prop. 4.2)
If (G,R) and (H,S) are (II, ¥)-refined frames and

t:G s H

is a X-bisimulation, then
%t :G/R +1 H/S

is a II-bisimulation. If ¢ is surjective, then so too is %t.’

Proof. —
The totality of %t follows from the totality of ¢.

To see that %t is open, observe that
%t(U) = Qs(H(Qz' (V)))

so, by the continuity of Qx, the openness of ¢, and the openness of Q)s, if U is open, so too is
%t(U). Likewise, for continuity, observe

%t (V) = Qr(t™1(Q5'(V)))
so concatenate the continuity of Q)s, the continuity of ¢, and the openness of Q.

To see that %t respects each m € 11, pick arbitrary (zg, yo) € ¢ witnessing ([zo]r, [vo]s) € %t.
Then,

[I7llg/® ([zo]) is defined <= ||7(|5 (o) is defined (Defn. 3.6)
< |I7lly (yo) is defined (t bisimulation)
= |I7llyys ([yo]) is defined (Defn. 3.6.)

If ||7r|| is defined,

I7llg/r ([zo]) = [lImllg (x0)]

171134/ ([wol) = [lIll3 (vo)]
Since ¢ is a bisimulation and ||7||g (7o) is defined,

17ll5¢ (o) € tlli7llg (x0))

and it then follows from the definition of %t that

(Il (@o)l, Il (wo)]) € %t
S0

(Illg (Fzol), Il (ool ) € %t,

as desired.

Finally, if ¢ is surjective, then

%t(IG/R|) = Qs(t(Qr' (IG/R))) (above)
= Qs(t(|9])) (Qr total)
= Qs(|H]) (t surjective)
L (Qs surjective)

so %t is surjective too.

SBut not the converse: %t can be surjective without ¢ being surjective.
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O

(Lemma 4.3)
If M, 9t are X-DTMs and ¢ : U(IN) +x U(N) a X-bisimulation between their underlying frames
which satusfies the (Base) condition:

x€Vom(p) <<= ye V) forallz € M|,y €t(x),pe P

then for all (z,y) € t,

M) Ee <= My Ev for all p € Lo (X).

Proof. —
By structural induction on ¢. The base case — atomic propositions — is exactly the (Base)
condition. The A and — inductive steps are trivial.

If (M, z) = Oy, then = € inton([¢]om), i.e. there’s an open set U C || such that
x € U C [¢]. Since t is open, we have that ¢(U) is open. Since z € U and (z,y) € t, we have
y € t(U). By the inductive hypothesis,

tU) € [eln

so conclude (9M,y) = Op. The proof in the other direction proceeds similarly, using the
continuity of ¢ rather than its openness.

If (M, z) = Oy for some o € ¥, then we know ||o||gy (z) is defined and is a y-world.
Since t respects o and (x,y) € t, we have that ||o||y (y) is defined and

(o llgn (2); llollp (v)) € ¢.
By the inductive hypothesis, ||o|g; (y) must validate ¢, hence

(M y) E Qo

as desired. Again, the other direction proceeds similarly. By induction, we have that the result
holds for all ¢.

g
(Theorem 4.4)
Ift:(G,R) — (H,S), then there is a bijection
7:DTMs(G,R) — DTMs(H,S)
such that for all 9t € DTMs(G, R)
e t preserves and reflects Lo (II) theories (pointwise and globally):

My FEy = TO)2)F¢ (y €19, z € t(y), » € Loo(D))
NEe = MEe (v € Lop(D))

e t preserves and reflects £(2) theories (pointwise):

My Ee < (TM).2) Fe (y €19], z € ty), ¢ € LO(3).)
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Proof. —
To define 7, first begin by noticing that %t induces a theory-preserving bijection

A:DTMs(G/R) — DTMs(H/S)
given by

Vi) (p) = %t(Van(p))-
Check that this is indeed a bijection (since %t is a bijection) and that for any (y, z) € t,

O ylr) Fe = (AOM),[2s) E ¢
for any ¢ € Lo (II). This is an application of Lemma 4.3, since %t is a II-bisimulation which,
by definition of V)(oy), satisfies the (Base) condition.
Furthermore, note that
MEp = XM Ee
[

)
This is due to the totality and surjectivity of %t: if (I, [y|r) = ¢ for all [y]r, then use the
result above to conclude that (A\(9), [z]s) E ¢ for all [z]s in the image of %t, which is to say,
all [z]s. Similarly for the other direction.
Now, recalling Lemma 3.4, define

T:ngo)\om;zl.

The right-hand side is the composition of three bijections, and is thus a bijection. So we have
that 7 is a bijection. Moreover, it preserves theories: for any (y, 2) € t and any ¢ € Lo (II),

My) Ee = <H7_3 M), lylr) E ¢ (Lemma 3.4)
= (Mg (M), [2ls) E o (above)
= (ks(\(kr' (M), 2) E ¢ (Lemma 3.4)
= (TM),2) o (defn. 7.)

as desired. We can also obtain

NEe — Mk

by concatenating the above result with Lemma 3.4:

NE = g (M Ey (Lemma 3.4)
= AMrp' (M) o (above)
= rs(Mrg' (M) E ¢ (Lemma 3.4)

as desired.

Finally, to see that ¢ preserves and reflects £~(3) theories, proceed by structural induction.
The base case is already covered above, and, as usual, the A and — inductive steps are trivial.
So it suffices to prove the (), inductive step.

For some 1) € L~(X), suppose for any (y,z) € t that

My Ey = (7(M),2) o

Now suppose (M, y) = Os¢ for some o € X. So ||o||y (y) is defined and is a ¢-world. Since
¢ respects o, we get that [lo|[. (g (2) exists, is t-related to [|o|y (y), and, by the inductive
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hypothesis, is a ¥-world. So (7(M),z) = (Os¢, as desired. The other direction proceeds
similarly: (7(90),2) = Oo¢ implies that [|o||, (g (2) must exist and be a ¢-world, so, since ¢
respects o, we have by the inductive hypothesis that ||o||y, (y) must exist and be a v-world, so
M, y) E Oo, and we're done.

(Prop. 5.1)
For any Il-frame F,

Thoo (°r<w(H) i OR{@}’R?TRKW}) = Thoo (or<w(H) ;fOR{S“’},R?TR{Sw})

i.e. the language Lo (or<“(II)) cannot distinguish the results of the program constructors
OR{<w} and OR{<w}.

Proof. —
O
(Prop. 5.2)
For each II-frame F, the inclusion function
[F1 % {0,135 — [ F] x {0, 1}
(z,5) = (2, 5)
is a strong embedding
(IOR{<W},R2R{<M}) (}-OR{gw}’R]O:R{Sw}) )
Proof. —
O

B Characterizations

Definition B.1
Given a (II, ¥)-refined frame (G, R) and worlds w, w’, write

w KR W

to mean that w and w’ are R-related. We then extend this to allow either side to be undefined:
for 0,0’ € X, write
lollg (w) =g ||o’|| (w)

to mean that either

e ||o||g is undefined at w and ||o’||; is undefined at w’
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(OR-Typ) Maybe(p, mo, 1) V Maybe, (p, mo, 1) Typicality
(OR-Reg0) Onlyy(p, mo, 1) — Maybeg(q, w2, 73) Regularity 0
(OR-Regl) Only, (p, m0, 1) — Maybe,(q, T2, 73) Regularity 1
(OR-Real0) p A Only,(q,m,m1) — O(p A Onlyy(g,m0,71)) Realization 0
(OR-Reall) p A Onlyy(q, 0, m1) — O(p A Only,(q,m0,71)) Realization 1
(OR-Refresh) P = Oskip or skip)P Refresh
(OR-Nest0) Onlyy(p, m0, 1) = Oskiporskip Ooo @ — Oogorer @ Nesting 0
(OR-Nest1) Only; (p, 70, m1) — Oskiporskip Oo1 ¢ — Oogoror @ Nesting 1

O(skip or skip) Oﬂ'o Y = O7ro Q(skip or skip) ¥

(OR-PrimInd) ~ Onlyy (T, skip, abort) — = Oz, =Onlyy(T,skip,abort) Primitive Independence

Only, (T, skip,abort) — = (Ox, ~Only;(T,skip, abort)

Figure B.1: xoRr{w}- P, q vary over @U{T, L}, mo, m1, T2, T3 vary over II', 0y, o1 vary over or<¥ (HT),

and ¢ varies over Lo (or<¥ (HT). Recall the abbreviations of Defn. 1.4.

e both ol (w) and |[o’||; (w') are defined, and moreover they are R-related:

(llollg (w), ']l () € R.

(Prop. 5.3)

XOR{w} (as given in Fig. B.1) right-characterizes OR {w}.

Proof. —

We'll address each axiom scheme in turn, proving that (a) the refined frames produced by
OR{w} satisfy the axioms, and (b) that any (II,or<¢(II"))-refined frame (G,R) validating
the axioms must be structured like an OR {w}-augmented frame. The precise meaning of
“structured like” will ultimately be the existence of a strong embedding of refined frames.

Start with (OR-Typ). The central function of the or construct is to select one of two
programs. The main thing we’ll be doing in this proof is codifying in the object language
what it means to “select” between programs, and the high-level process for how this selection
takes place in a OR {w}-augmented frame. For the moment, we’ll suppose the programs we're
selecting between are primitives, myp and 7. For some atomic proposition p, the formula
Maybe(p, mo, 1) asserts that, as far as the truth or falsity of p is concerned, my or w1 might
be my. Notably, it could be the case that mg or m; actually ends up being 7, but the world
resulting from 7y and the world resulting from 7 just happen to either both satisfy or both
refute p (or both 7y and 7 are undefined). The formula Maybe; (p, 7wy, 71), of course, encodes
the analogous statement between 7 and mg or 7.

Requiring this axiom for all p and all 7,7 begins to formalize our intuition that or
“selects”. Consider the following claim.

Claim 1
Given a refined frame (G, R) validating all instances of (OR-Typ), a world w of G, and
T, T1 € HT,

Imo or milg (w) =r [Imollg (w) — or |mo or millg (w) =r [Imllg (w).

So, up to R-equivalence, 7y or 1 takes you to the same place as either my or ;. Note that this
‘or’ is not exclusive: the ~p relation is an equivalence relation, so if it happens to be the case
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that [|mollg (z) ~= |71l (x), then both disjuncts of Claim 1 will hold. To express this more
concisely, define a function

PreType : |G| x TIT x TIT — P({0,1})
such that
j € PreType(z,m,m1) <= [[moormllg (z) ~r |7l (z) (4 €{0,1})

The point of (OR-Typ) is to guarantee PreType(z, mp, 1) # 0.

Refined frames produced by OR {w} obey this requirement. Pick a world (z,~) of FOR{«}
and consider hd(v). Since v € {0,1}*, hd(y) must either be 0 or 1. Suppose hd(y) = 0. Then,

lo or 1| orees (2,7) R poreey ([Imoll (), () (Defn of OR {w})
OR{w

~gontat (7ol (), 7) (Defn of R

%R?TR{UJ} 70| Forgwy (x,7) (Defn of OR{w})

Identical logic with hd(y) = 1 will yield ||mg or 1| rorfw} (2,7) R ROR() |71 Forgey (2,7).

Fither way, by some simple reasoning with R?_-R{w}—respecting valuations, this implies that

(]—" OR{w} RgR{w}> validates all instances of (OR-Typ).

So (OR-Typ) guarantees that PreType : |G| x ITT x IIT — P({0,1}) is well-defined and never
returns (). But notice that PreType depends on its primitive program arguments: a priori,
there’s nothing preventing, say,

PreType(w, m, m) = {0} and PreType(w, ma, m3) = {1}.

I.e. in world w, 7y or 71 is interpreted as my but 7o or 73 is interpreted as w3. But this is not
how OR {w}-augmented frames operate: in a world (z,~), either the first “disjunct” is chosen
(i.e. hd(y) =0, so mpormy is mp and g or 73 is my) or the second one (i.e. hd(v) = 1, so morm;
is 711 and 79 or 73 is 73). The choice of program is indifferent two which programs are being
chosen between.

So now consider (OR-Reg0): it asserts that if a world validates Onlyy(p, mp,m1) for some
p, ™o, 71, then it validates Maybeg(q, 72, m3) for arbitrary g, ma, 3. And then (OR-Regl) makes
the analogous assertion for Only;. Assuming all instances of these axioms makes Only, and
Only; into powerful enough assertions to prove what we want.

Claim 2
Suppose (G,R) is a refined frame validating all instances of (OR-Typ), (OR-Reg0), and
(OR-Regl). Then, for each world w € |G|, exactly one of the following holds:

e w is a 0-world: for all 7,7’ € IIT,
0 € PreType(w, m, ')

e wis a 1-world: for all 7,7’ € IIT,

1 € PreType(w, m, ')



Characterizing Nondeterministic Union 21

Proof. —
First we show that each world must either be a 0-world or a 1-world. Suppose not. Then
we have a world w and primitive programs mg, 71, w2, 73 such that

PreType(w, mg, m1) = {0} and PreType(w, ma, m3) = {1}.

So
[0 or m1]| (w) ~x [Imo]l (w)
|70 or w1 || (w) #x [|m1| (w)
(| or w3 (w) ~x [|7s3]| (w)
(|72 or 73| (w) %R |72l (w)

Pick p # ¢ and define an R-respecting valuation by:

V() = {ﬁ

V(o) = {i

These cases are exhaustive: |7l (w) #r |71 (w), so if ||7p]| (w) is undefined, |71 (w)
must be. ||me|| (w) %r |72 or w3]| (w), so if ||m2|| (w) is undefined, then |79 or 73|| (w) must
be.

lmol| (w)) if [|mo|| (w) is defined

|m1]| (w)) otherwise

|72l (w)) if ||me|| (w) is defined
|

||mo or ms|| (w)) otherwise

PG NG

Observe that, under this valuation, w validates Onlyy(p, mo, 71): if ||mo|| (w) is defined,
then ||71]| (w) is either undefined or not in V'(p), so the first disjunct of Onlyy(p, mo, 71) is
satisfied. If ||mp]| (w) is not defined, then neither is ||mg or m1|| (w), but ||71|| (w) is defined
and in V(p) by definition, validating the second disjunct of Only,(p, 7, 71).

However, w refutes Maybey(q, w2, m3). If ||m2| (w) is defined, then by definition it is
in V(q), so w satisfies On,q. But [|myor m3|| (w) #r ||| (w), so w refutes Onryornsq,
defeating Maybe(q, w2, m3). On the other hand, if ||m2| (w) is undefined, w refutes Onr,q
automatically. But in that case |72 or m3|| (w) is defined and is a ¢g-world by definition of
V', again refuting Maybe(q, 72, 73). So, no matter what, we have refuted (OR-Reg0). By
contradiction, conclude that every world must either be a 0-world or a 1-world.

Finally, let us see that w cannot be both a 0-world and a 1-world (i.e. that it cannot
be that PreType(w,m,n’) = {0,1} for all m,7' € II'). To see this, it suffices to consider
the program

skip or abort

If w is a 0-world, then it “selects” the first disjunct and
||skip or abort|| (w) = w.
On the other hand, if w is a 1-world, then it “selects” the second disjunct and
||skip or abort|| (w) is undefined.

Clearly, these are incompatible, so w cannot be both.
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O(Claim 2)
This guarantees that the following function is well-defined and total.

Type : |G| = {0, 1}
0 if ||mora|lg (w) =g ||I7]lg (w) for all =, 7" € IIf
L if [|mor 7|l (w) =% ||[7'|lg (w) for all 7,7’ € 1t

So if w is a O-world, Type(w) = 0; if w is a 1-world, Type(w) = 1. Let us state one helpful
lemma.
Lemma B.1
Let (G,R) be a refined frame validating all instances of (OR-Typ), (OR-Reg0), and (OR-
Regl). Then, for any w € |G| and any ¢ € ® U {T, L}, the following are equivalent.

(1) Type(w) =0

(2) There exists mp, 71 € II and an R-respecting valuation V' such that
((G,V),w) k= Onlyy(g, mo, 71)-
(3) For all 9t € DTMs(G,R),
(O, w) E Oskip or abort) | -

And analogously for Type(w) =1, Onlyl (Qa 70, 7T1)7 and _'O(skip or abort)T (OI‘ O(abort or skip)—l—)'

As mentioned, OR{w}-augmented refined frames will satisfy this. Worlds of the form
(z,0v) will be 0-worlds and worlds of the form (z, 1) will be 1-worlds, essentially by definition.
It’s easy to check that O-worlds will validate every Maybe, formula, and 1-worlds every Maybe; .
Furthermore, in light of Lemma B.1, we see that only the O-worlds will validate Only, formulas
and only the 1-worlds will validate Only; formulas. So every instance of the Regularity axioms
will be satisfied on OR {w}-augmented frames.

So we have that every world is either a 0-world or a 1-world, and not both. The next
feature of OR {w}-augmented frames we’ll need to encode is that 0-worlds and 1-worlds “come
in pairs”: the world (z,07) is a 0-world, and its “twin” (z,17) is a 1-world. The existence of
both “possibilities” is the central feature of these frames. The (OR-Real) axioms will guarantee
that every R-equivalence class contains both a 0-world and a 1-world.

Claim 3
If (G,R) is a refined frame satisfying all instances of the (OR-Typ), (OR-Reg), and (OR-
Real) axioms, then every R-equivalence class U contains both a 0-world and a 1-world.

Proof. —
Pick arbitrary U. By the previous lemmas and claims about (OR-Typ) and (OR-Reg), we
have that every world w € U is either a O-world or a 1-world. We’ll suppose we have w € U
with Type(w) = 0 and use (OR-Reall) to find a w’ € U with Type(w’) = 1. An identical
argument can be made using (OR-Real0) to obtain a 0-world in U from the existence of a
1-world in U, completing the argument.

Let w be some arbitrary 0-world in U, p some atomic proposition. Let V be an
R-respecting valuation on G which puts

V(p) =U.
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So all (and only) the worlds in U validate p. Then, observe that the following is an instance
of (OR-Reall)

p A Onlyy(T,skip,abort) — O(p A Only, (T, skip, abort)).

Now, we can see that, under the valuation V, w validates the antecedent: we stipulated
V to be such that w validates p and ||skip or abort|| (w) = w because w is a 0-world, so we
can see that the first disjunct of Only,(T,skip, abort) is satisfied at w. Therefore w must
validate the consequent of this instance of (OR-Reall):

((Q,V),w) |: <>(p N OnIY1(T’7TUv7Tl))'

So w must be in the closure of [p] N [Only,(T,mo,71)], which implies that the latter is
nonempty. So we obtain a world

w’ € [p] N [Only, (T, mq, )]

However, notice that [p] = U, so w’ € U. Since w' validates Only,(T,mo, 1) for some
g, m1 and some valuation V', we obtain from Lemma B.1

Type(w') =1

as desired.

O(Claim 3)

So every R equivalence class contains a world w such that Type(w) = 0 and a world w’

such that Type(w’) = 1. As mentioned, OR {w}-augmented frames will possess this property:
the R~ “J_equivalence classes are all of the form

{(z,8) : Se{0,1}*}

for each = € |F|. This equivalence class contains a multitude of 0-worlds (all those (z,.5) such
that hd(S) = 0) and 1-worlds (all those (x,S) such that hd(S) = 1). And so if p, ¢, m, 71, and
the valuation are such that some 0-world (x,0v) validates p A Onlyy(q, 7o, 1), it is quick to
check that (z, 1) will validate p A Only, (g, 7o, m1), and vice versa. So the Realization axioms
are satisfied as well.

So far, we have only been discussing or-ing together primitive programs (plus skip and
abort), and have obtained a fairly robust description of how these frames resolve a single or.
In order to extend this to nested or’s, start by considering the program (skip or skip). In a
OR {w}-augmented frame, executing this program takes one from (z,v) to (z,tl(7)), using up

a “bit” from v, but staying within the same RgR{w}—equivalence class. The axiom scheme
(OR-Refresh) encodes this for an arbitrary refined frames.

Claim 4
If (G,R) is a refined frame satisfying (OR-Refresh), then for every w € |G|,

(w, ||skip or skip|| (w)) € R.

Notice that, as a corollary of this claim, we have that ||skip or skip|| is total — this will be
relevant momentarily. So in any refined frame validating all the axioms so far, we have an
assignment of a “type” (0 or 1) to each world, and a function |[skip or skip|| which permutes
each R-equivalence class. This allows us to make the following definition.
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Definition B.2
Given (G, R) satisfying (OR-Typ), (OR-Reg), (OR-Real), and (OR-Refresh), define

FullType : |G| — {0,1}*

by
Full Type(w)(n) = Type(||skip or skip||" (w))

So for each world w of such a frame, FullType(w) is an infinite® sequence of 0’s and 1’s,
spelling out what type of worlds will be encountered by repeatedly executing skip or skip. Of
course, for OR {w}-augmented frames, the FullType of a world is just its program constructor
state:

Proposition B.2
For any Il-frame F, any x € |F|, and any S € {0,1}",

Full Type(z, S) = S.

Now, all that’s left is for us to require that the FullType of a world in an arbitrary refined
frame specifies the behavior of nested or’s the same way as it does in an OR {w}-augmented
frame. This will be the role of (OR-Nest) and (OR-PrimInd).

Lemma B.3
Suppose (G, R) validates all of xor, and let og, 01 € or<¥ (HT). Then,

e for all O-worlds wq of G,
|oo or a1lg (wo) == loollg (I[skip or skipl|g (wo));
e and for all 1-worlds wy of G,

loo or ailg (w1) ~r [lo1llg (lIskip or skip||g (w1)).

So what this lemma says is that, like in OR {w}-augmented frames, the execution of arbi-
trary og or o1 from w consists of (a) reading off the first bit of FullType(w) to see whether w
is a 0-world or a 1-world, (b) “throwing out” that bit (taking us to |[skip or skip|| (w), which
has FullType equal to the tail of FullType(w)), and then (c) executing o or o; accordingly.
So we've almost required all the salient properties. But we need two more requirements: (1)
execution of primitives doesn’t touch the FullType at all, and (2) executing g or o1 uses up
exactly 1 “bit” (to select og or o1), plus however many bits are required to execute whichever
of the two we select. This is formally stated in the following lemma.

Lemma B.4
For any (G, R) validating all of yoR, any world w of G, and any 7 € II' such that [7llg (w)
is defined,
FuIIType(||7r||g (w)) = FullType(w).

For any o9, 01 € or<¥(IIf),

FullType(||oollg (|[skip or skip||g (w)))  if Type(w) =0
1

FullType or =
ype(lloo or enllg () {FuuTypewalug<rskiporskip||g<w>>> if Type(w) —

if the worlds in question are defined.

5This is where we use the totality of ||skip or skip||.
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Proof. —
Let’s begin with the first claim, about how FullType is preserved in the execution of a
primitive program. To begin with, the claim that

Type(||7(|g (w)) = Type(w)

whenever ||7|| (w) is defined is (almost) directly asserted by the latter two (OR-Primind)
axioms. They say that execution of 7 € II' cannot take one from a 0-world to a 1-world, or
vice versa. So execution of primitives preserves Type. To extend this to FullType, suppose
FullType(||7|| (w)) # FullType(w). Then there must be some n > 0" such that, without loss
of generality,

Full Type(||7|| (w))(n) =1 and Full Type(w)(n) = 0.
So then let ¢ be

O(skip or skip) O(skip or skip) - -+ O(skip or skip) OnlyO(Ta skip, abort).

n—1

We'll refute the instance of the first (OR-PrimInd) axiom with this as our ¢.

Regardless of the valuation, w will validate O skip or skip) Ox - Since Full Type(w)(n) =
0, we have by definition of Full Type that ||skip or skip||" (w) is a O0-world, i.e.

Type(||skip or skip||™ (w)) = 0.
By the above, this tells us that
Type(||7| (|[skip or skip[|" (w))) = 0.

And, therefore || || (||skip or skip||™ (w)) validates Only,(T, skip, abort), and we conclude that
w validates O(skip or skip) Oﬂ' P-
However, w refutes O O(Skip or skip) - By the hypothesis above, we know that

FullType(|7[| (w))(n) = 1,

ie.
Type(|[skip or skip||" (|| (w))) = 1.
Thus, ||skip or skip||™ (||| (w)) is a 1-world and must refute Only, (T, skip, abort). Therefore,

we get that w refutes

Oﬂ' O(skip or skip) ¥ = Oﬂ Q(skip or skip) O(skip or skip) - -+ O(skip or skip) OnIyO(Ta skip, abort)‘

n

So the first (OR-PrimlInd) axiom is refuted at w, contrary to our assumption.

Let’s move on to the second claim. Again, the valuation is unimportant here. Suppose
without loss of generality that Type(w) = 0 and assume for contradiction that og,o; are
such that

Full Type(||og or o1]| (w)) # Full Type(||oo|| (||skip or skip|| (w))).

"We know n cannot be 0, since Full Type(w)(0) = Type(w).
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Again, there must be some n € N at which index the two sequences differ. Assume without
loss of generality that

Full Type(||og or o1 || (w))(n) =0 and Full Type(||oo]| (||skip or skip|| (w)))(n) = 1.
We'll refute the following instance of (OR-Nest0):
Onlyo (T, skip, abort) — O skip or skip) O © = Oogoror ¢
where ¢ is given as

O(skip or skip) O(skip or skip) - -+ O(skip or skip) Onlyl(T, skip, abort)'

First, observe that w validates Only, (T, skip, abort), since it is a 0-world. Next, we see
that w validates O skip or skip) Ooo - To see this, note that

FullType([|oo | (l|skip or skip|| (w)))(n) = 1
means ||skip or skip||" (]|oo]| (||skip or skip|| (w))) is a 1-world, and therefore satisfies Only, (T, skip, abort).
It follows that ||og|| (||skip or skipl| (w)) validates ¢, so w validates O skip or skip) O ¥-
Finally, we show that w refutes Oggors;p- This follows from the assumption that
Full Type(||og or o1]| (w))(n) = 0. Again, we unfold this assumption to see that

||skip or skip||" (||og or 1| (w)) is a O-world

and thus ||og or 01| (w) cannot validate .
So we have that w validates Only,(T,skip,abort) and O skip or skip) Ooo % but not

Oegora, , contrary to our assumption of (OR-Nest0). So conclude

Full Type(||og or o1]| (w)) = Full Type(||oo|| (||skip or skip|| (w))).

0

This marks the last structural lemma we need to prove, and we can now finally conclude
with our main result. To finish off the “soundness” portion of our proof — that any OR{w}-
augmented frame validates yor — it just remains to check (OR-Nest) and (OR-Primind). But
this is pretty quick: for a O-world (z,07v) in an OR {w}-augmented frame,

lloo or ol (2, 07) = [looll (z;7) = lloo]| ([|skip or skip|| (z,07))

so (OR-Nest0) will automatically be satisfied, and likewise for (OR-Nestl). For the latter two
(OR-PrimInd) axioms: the fact that ||| (x,S) is defined as (||| (z),5), i.e. the S is left alone
completely, means that executing primitives from a 0-world will always land you in a 0-world,
and from a 1-world will always land in a 1-world. For the first (OR-PrimInd) axiom, one can
easily verify that, in a OR {w}-augmented frame,

||| o ||skip or skip|| = ||skip or skip|| o ||7]|

satisfying the axiom. We have therefore proved the soundness part.

The “completeness” part — that every yor-satisfying (G, R) can be embedded into an
OR {w}-augmented frame, is stated as the following claim.
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Claim 5
Given (G, R) validating all of xor, the function

2161 - [(G/R)O%)
cw — ([w]gr, Full Type(w))

is a strong embedding of refined frames
w OR{w
(6. R) ——— ((g/R)OR} R )

Proof. —
For convenience of notation, let F denote G/R.

First of all, the totality of ¢ follows from the (already proven) totality of Full Type: each
world w of G has a well-defined FullType(w) € {0,1}*, hence t is well-defined on every w.

To see that %t : F — FOR{w} /RgR{w} is a Il-iso, observe that %t is just the iso-

morphism of Prop. 3.5: each world [w|g € |F| = |G| /R is identified with the ROR{W}
equivalence class of worlds of the form ([w]g,S) for S € {0,1}*.

Finally, we must prove that ¢ respects all o € or<¥ (HT). We do this by structural
induction on o. As our base case, pick 7 € II' and w € |G|. By definition of quotient,
[Imllg/r ([w]r) is defined iff [|7||g (w) is defined. By definition of OR{w}-augmentation,
[[7]l Fortwy ([w]r, S) is defined (for any S € {0,1}) iff |75/ ([w]r) is defined. If these
are all defined, then

(el () = ([ Il ()] . FullType(g (u))) (Defn. 1)
= ([lI7llg (w)] z, Full Type(w)) (Lemma B.4)
= ([I7ll z ([wlw), Full Type(w)) (Defn. quotient)
— 1ell roncer ([, FullType(uw)) (Defa. OR {w})
= |17l porgey (¢(w)) (Defn. t)

as desired.

Now inductively suppose for some og that for any w € |G| that ||og||g is defined at w
iff [|oo|| zoriwy is defined at t(w), and if they are defined,

t(lloollg (w)) = llooll Forewr (t(w))

and likewise for oq. Then pick an arbitrary w € |G| and assume without loss of generality
that w is a O-world. So then, by Lemma B.3,

lovoraullg ()  ~  llovollg (Iskip or skipllg (w)). *)

For convenience, write w’ for |[skip or skip||; (w). Then notice by definition of FullType that
FullType(w') = tI(Full Type(w))

and thus, recalling that w and w’ must be R-related,

t(w') = ([w]r, tI(FullType(w))) = [|skip or skip|| zor(w) ((w)). (**)
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So then we have the following chain of reasoning: |og or 01| (w) is defined iff |loo||g (w')
is defined (by (*)); lloollg (w') is defined iff |lool rorguy (t(w')) is defined (by inductive
hypothesis); and |ogl| rorfw) (t(w')) is defined iff ||og or o1 roriwy (t(w)) is defined (by
(**) and definition of OR{w}). So all that remains to show is that ¢(||ogoro1||g (w))
is [|og or o1 rortwy (t(w)) if both are indeed defined.
First we show that they’re in the same RgR{w}—equivalence class. To begin, note

[loo or o1 Forewy (E(w))

= llooll Forewy ([Iskip or skip|| zorgey (t(w)))

= [looll rorgey (t(w")) (**)

= t([loollg (w')). (TH)

Now, |oollg (w') and [[og or o1||g (w) are R-related (*), and thus ¢ will send them into the
}

R{w

O .
same R - equivalence class. Thus,

R?—R{w}

[loo or 01| poriwy (t(w)) t(lloo or a1lg (w))-

So, in order to show that ||og or 01| zorwy (t(w)) = t(||loo or 015 (w)), it suffices to show
Full Type(||og or 01| zortwy (t(w))) = Full Type(t(||oq or o1llg (w))).

Notice that, by definition, ¢ preserves FullType: FullType(¢(w)) = FullType(w). Note that
the FullType on the right-hand side of this equation is calculated according to how or’s
are resolved in G, whereas the left-hand FullType is calculated according to how FOR{w}
resolves or (see Prop. B.2). Then,

FullType([|og or o1 rorey (t(w)))

= FullType(t([|oollg (w'))) (loo or 1| poreey (t(w)) = t(llovllg (w')))
= FullType(||oo]|g (w'))) (t preserves FullType)
= FullType(||og or 01| (w)) (Lemma B.4)

So ||log or o1 || ror(wy (t(w)) are RgR{w}—related and have the same Full Type. By how OR {w}-
augmented frames are structured, this implies they are equal.

So conclude that for every w and every o € or<¢(II'), |ollg (w) is defined iff ||| zorgwy (H(w))
is defined and, if both are defined,

t(llollg (w)) = lloll Forew (t(w))-

So t respects each o, and therefore constitutes an embedding of refined frames.

O(Claim 5)

And, at long last, we’re done.
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