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Some sources

• Categories, Allegories (Freyd-Scedrov)

• Sketches of an Elephant (Johnstone)

• https://ncatlab.org/nlab/show/allegory

• Wikipedia has a good article:
https://en.wikipedia.org/wiki/Allegory (mathematics)

2 Allegories and Bisimulations

https://ncatlab.org/nlab/show/allegory
https://en.wikipedia.org/wiki/Allegory_(mathematics)


Some sources

• Categories, Allegories (Freyd-Scedrov)

• Sketches of an Elephant (Johnstone)

• https://ncatlab.org/nlab/show/allegory

• Wikipedia has a good article:
https://en.wikipedia.org/wiki/Allegory (mathematics)

2 Allegories and Bisimulations

https://ncatlab.org/nlab/show/allegory
https://en.wikipedia.org/wiki/Allegory_(mathematics)


Some sources

• Categories, Allegories (Freyd-Scedrov)

• Sketches of an Elephant (Johnstone)

• https://ncatlab.org/nlab/show/allegory

• Wikipedia has a good article:
https://en.wikipedia.org/wiki/Allegory (mathematics)

2 Allegories and Bisimulations

https://ncatlab.org/nlab/show/allegory
https://en.wikipedia.org/wiki/Allegory_(mathematics)


Some sources

• Categories, Allegories (Freyd-Scedrov)

• Sketches of an Elephant (Johnstone)

• https://ncatlab.org/nlab/show/allegory

• Wikipedia has a good article:
https://en.wikipedia.org/wiki/Allegory (mathematics)

2 Allegories and Bisimulations

https://ncatlab.org/nlab/show/allegory
https://en.wikipedia.org/wiki/Allegory_(mathematics)


0 Background: the Allegory of Relations



Rel

Rel is a standard example of a category:
Defn. Rel is the category whose

• objects are sets

• morphisms are binary relations:

homRel(A,B) = {R | R ⊆ A× B} = P (A× B)

• composition operation is given by

S ◦ R = {(a, c) ∈ A× C | ∃b ∈ B (a, b) ∈ R & (b, c) ∈ S}

for R ∈ homRel(A,B), S ∈ homRel(B ,C ).
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Set versus Rel

It is customary to regard Set as a subcategory of Rel:

the inclusion
functor takes a function f : A→ B to its graph
{(a, f (a)) | a ∈ A} ⊆ A× B , which we’ll also call f :

f ∈ homRel(A,B)

Set
• has all small limits and colimits

• has exponentials and a subobject classifier

• has cartesian closed slice categories

• . . .

Rel
• doesn’t (for the most part)
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Pos-enrichment

Notice:
homRel(A,B) = P (A× B)

• ⊆ is a partial order on homRel(A,B):
I For all R ∈ homRel(A,B), R ⊆ R
I For all R,R ′,R ′′ ∈ homRel(A,B), if R ⊆ R ′ and R ′ ⊆ R ′′, then R ⊆ R ′′

I If R ⊆ R ′ and R ′ ⊆ R, then R = R ′

• ⊆ is compatible with composition: for R : A→ B , S , S ′ : B → C and
T : C → D in Rel,

S ⊆ S ′ =⇒ (S ◦ R) ⊆ (S ′ ◦ R)

S ⊆ S ′ =⇒ (T ◦ S) ⊆ (T ◦ S ′)
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Pos-valued representables

The previous slide can be summarized as asserting that the following are
functors for any set C :

homRel(−,C ) : Relop → Pos

: A 7→ (homRel(A,C ),⊆)

: R ⊆ A× B 7→ (− ◦ R) : (homRel(B ,C ),⊆)→ (homRel(A,C ),⊆)

homRel(C ,−) : Rel→ Pos

: D 7→ (homRel(C ,D),⊆)

: U ⊆ D × E 7→ (U ◦ −) : (homRel(C ,D),⊆)→ (homRel(C ,E ),⊆)
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We have the meets

Given R ,R ′ ∈ homRel(A,B),

R ∩ R ′ ∈ homRel(A,B)

This satisfies some nice properties, e.g.
• S ◦ (R ∩ R ′) ⊆ (S ◦ R) ∩ (S ◦ R ′)
• (S ∩ S ′) ◦ R ⊆ (S ◦ R) ∩ (S ′ ◦ R)

• R ∩ R = R , R ∩ R ′ = R ′ ∩ R , R ∩ (R ′ ∩ R ′′) = (R ∩ R ′) ∩ R ′′

Also: nullary intersections (A× B ∈ homRel(A,B)), infinitary
intersections, binary and infinitary unions, nullary unions (the empty
relation), etc.
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Dagger Categories

For any R ∈ homRel(A,B),

R† := {(b, a) | (a, b) ∈ R} ∈ homRel(B ,A)

Defn. A dagger category C is a category equipped with a
contravariant endofunctor † : Cop → C such that

• † is the identity on objects

• † is an involution: † ◦ † = idC
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This structure doesn’t exist (or is trivial) for Set

For any functions f , f ′ : A→ B ,

• f ⊆ f ′ if and only if f = f ′

• f ∩ f ′ is only a function if f = f ′ (in which case f ∩ f ′ = f = f ′)

• f † is only a function if f is a bijection
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Allegories

Defn. An allegory C is a category equipped with

• A poset structure ≤ on each hom-set which is compatible with composition and has
binary meets

• An involution † : Cop → C
such that

• Involution distributes over meets: (R ∧ R ′)† = R† ∧ R ′†

• Composition semi-distributes over meets:

S ◦ (R ∧ R ′) ≤ (S ◦ R) ∧ (S ◦ R ′)
(S ∧ S ′) ◦ R ≤ (S ◦ R) ∧ (S ′ ◦ R)

• The modular law is satisfied:

(S ◦ R) ∧ T ≤ (S ∧ (T ◦ R†)) ◦ R
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Allegories

Defn. An allegory C is a category equipped with
• A poset structure ≤ on each hom-set which is compatible with composition (i.e.

the function (− ◦ −) : homC(B ,C )× homC(A,B)→ homC(A,C ) is monotone)
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Allegories

Defn. An allegory C is a category equipped with
• A poset structure ≤ on each hom-set which is compatible with composition and has

binary meets (for any R ,R ′ ∈ homC(A,B), R ∧ R ′ is the greatest lower bound of R
and R ′)
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Rel is an allegory

For any R ⊆ A× B , S ⊆ B × C and T ⊆ A× C :

(a, c) ∈ (S ◦ R) ∩ T ⇐⇒ (a, c) ∈ S ◦ R and (a, c) ∈ T

⇐⇒ ∃b ∈ B (a, b) ∈ R and (b, c) ∈ S and (a, c) ∈ T

(a, b) ∈ R and (a, c) ∈ T ⇐⇒ (b, a) ∈ R† and (a, c) ∈ T

=⇒ (b, c) ∈ T ◦ R†

(b, c) ∈ S and (b, c) ∈ T ◦ R† and (a, b) ∈ R

⇐⇒ (b, c) ∈ S ∩ (T ◦ R†) and (a, b) ∈ R

=⇒ (a, c) ∈ (S ∩ (T ◦ R†)) ◦ R
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Simple and Entire morphisms

Note: if R ∈ homC(A,B) for some allegory C,

R ◦ R† ∈ homC(B ,B) and R† ◦ R ∈ homC(A,A)

Defn. A morphism R : A→ B in some allegory is said to be

• simple if R ◦ R† ≤ idB ,

• cosimple if R† ◦ R ≤ idA,

• entire if idA ≤ R† ◦ R , and

• coentire if idB ≤ R ◦ R†.
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The (co)simple and (co)entire morphisms of Rel

Prop. A relation R ∈ homRel(A,B) is

• simple iff it is a partial function: (a, b) ∈ R and (a, b′) ∈ R implies
b = b′

• cosimple iff it is injective: (a, b) ∈ R and (a′, b) ∈ R implies a = a′

• entire iff it is entire (or total): for all a ∈ A, there exists b ∈ B such
that (a, b) ∈ R

• coentire iff it is surjective: for all b ∈ B , there exists a ∈ A such that
(a, b) ∈ R

Note Set is the subcategory of simple, entire relations
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Some general results (for an arbitrary allegory)

Prop. All isomorphisms are simple, cosimple, entire, and coentire

Prop. The class of simple morphisms, the class of cosimple morphisms,
the class of entire morphisms, and the class of coentire morphisms are
closed under composition
Prop. The class of (co)simple morphisms is downward closed:

R ≤ R ′ and R ′ is (co)simple =⇒ R is (co)simple

Prop. The class of (co)entire morphisms is upward closed:

R ≤ R ′ and R is (co)entire =⇒ R ′ is (co)entire

Prop. R is entire iff R† is coentire (and similarly for (co)simple)
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The allegory of internal relations of a regular category

We can “internalize” the notion of a relation:

given a category C with
binary products, a subobject

R A× B

is an internal binary relation between A and B .

We can form the category Rel(C) with the same objects as C, and whose
morphisms A→ B are internal binary relations between A and B .
Thm. If C is a regular category, then Rel(C) is an allegory
Prop. Set is a regular category, and Rel = Rel(Set)
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1 Allegories with Back-and-Forth Classes



Top

Defn. A topology on a set X is a collection τ ⊆ P (X ) (the elements of τ are called
open subsets of X )

such that
• ∅,X ∈ τ
• If U ,U ′ ∈ τ , then U ∩ U ′ ∈ τ
• If I is a set and Ui ∈ τ for each i ∈ I ,(⋃

i∈I

Ui

)
∈ τ.

Defn. Top is the category whose
• objects are topological spaces: pairs (X , τ) where τ is a topology on X
• morphisms are continuous functions: f : (X , τX )→ (Y , τY ) is continuous if

U ∈ τY =⇒ f −1(U) ∈ τX
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Continuous Relations don’t give rise to an allegory

We can generalize this to relations:

Defn. Given topological spaces (A, τA) and (B , τB) and R ⊆ A× B , R is
said to be continuous if

U ∈ τB =⇒ R−1(U) ∈ τA

where R†(U) =
{
a ∈ A | (u, a) ∈ R† for some u ∈ U

}
.

Problem: R continuous does not imply R† continuous, so the category
of continuous relations (which is a category), is not an allegory.
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Proposed approach: TopRel

Defn. TopRel is the category whose

• objects are topological spaces (A, τA)

• morphisms R : (A, τA)→ (B , τB) are binary relations R ⊆ A× B . (no

assumptions on R – ignore the topologies for now)

Prop. TopRel is an allegory.
Proof is identical to the proof that Rel is an allegory
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Back and Forth

Defn. Write Back for the class of continuous morphisms in TopRel

Defn. Write Forth for the class of open morphisms in TopRel:
morphisms R ∈ homTopRel((A, τA), (B , τB)) such that

U ∈ τA =⇒ R(U) ∈ τB .
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Some basic results

• R ∈ Forth if and only if R† ∈ Back

• Both Back and Forth are closed under composition and contain all
Top-isos (homeomorphisms)

• Top is the subcategory of continuous, entire, simple
TopRel-morphisms

• Quotient maps X → X/ ∼ in Top are open and coentire, but are
only cosimple if ∼ is identity

• A TopRel-iso (a bijection) is a Top-iso (a homeomorphism) iff it is in
Forth and Back
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Another example: DynRel

Defn. A dynamic set is a pair (A, f ) where A is a set and f : A⇀ A is
a partial function (a simple Rel-endomorphism).

Defn. DynRel is the allegory of dynamic sets and binary relations,
whose back and forth classes are given by:
• R : (A, f )→ (B , g) is in Forth if

f (a) is defined and (a, b) ∈ R =⇒ g(b) is defined and (f (a), g(b)) ∈ R

• R : (A, f )→ (B , g) is in Back if

g(b) is defined and (a, b) ∈ R =⇒ f (a) is defined and (f (a), g(b)) ∈ R
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Parametrized: Σ-DynRel

Defn. For a set Σ, a Σ-dynamic set is a set A equipped with a
Σ-indexed family of partial functions {fσ : A⇀ A}σ∈Σ.

Defn. Σ-DynRel is the allegory of Σ-dynamic sets and binary relations.
For each σ ∈ Σ, there are classes of morphisms, σ-Forth and σ-Back,
defined as above.

So, for each binary relation R , there is some subset Π ⊆ Σ of all those σ
such that R is in σ-Forth (or σ-Back, or both).
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2 Modal Logics and Bisimulation
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Valuations

The model theory of classical logic makes use of valuations: functions
which “assign truth values” to atomic propositions

v : Φ→ {0, 1}

We can generalize this somewhat:

v : Φ→ P (X )

v(p) is the extension of p, or the set of “states where p is true”.
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Dynamic Modal Logic

We can pair together a dynamic set (A, f ) with a valuation
v : Φ→ P (A) to get a dynamic model.

Dynamic models interpret the language L©:

ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | ©ϕ (p ∈ Φ)

We define a function J−K : L© → P (A) recursively by

JpK = v(p) (p ∈ Φ)

J¬ϕK = A \ JϕK
Jϕ ∧ ψK = JϕK ∩ JψK

J©ϕK = f −1JϕK
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Bisimulations of Dynamic Models

Defn. A bisimulation between dynamic models (A, f , vA) and (B , g , vB)
is a binary relation S ∈ homDynRel((A, f ), (B , g)) in both the Forth and
Back classes, which also satisfies the Base condition: for any (a, b) ∈ S
and p ∈ Φ,

a ∈ vA(p) ⇐⇒ b ∈ vB(p).
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Bisimulation Invariance

Thm. For dynamic models (A, f , vA) and (B , g , vB) and a bisimulation S
between them,

• If (a, b) ∈ S , then for any ϕ ∈ L©,

a ∈ JϕKA ⇐⇒ b ∈ JϕKB

• If S is Entire, then

JϕKB = B =⇒ JϕKA = A

• If S is Coentire, then

JϕKA = A =⇒ JϕKB = B
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Multiple dynamics

ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | ©σϕ (p ∈ Φ, σ ∈ Σ)

J©σϕK = f −1
σ JϕK

For Π ⊆ Σ, a Π-bisimulation between Σ-dynamic models (A, {fσ}σ∈Σ , vA)
and (B , {gσ}σ∈Σ , vB) is a relation satisfying Base, and π-Forth and
π-Back for each π ∈ Π.
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Topological Modal Logic

We can instead use a topological structure to interpret �. Define L� by

ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ (p ∈ Φ)

A topological model (A, τA, v) interprets L�:

JpK = v(p) (p ∈ Φ)

J¬ϕK = A \ JϕK
Jϕ ∧ ψK = JϕK ∩ JψK

J�ϕK = int(JϕK)

where int denotes topological interior (with respect to τA).
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Topo-bisimulations

Defn. A topo-bisimulation between topological models (A, τA, vA) and
(B , τB , vB) is a TopRel-morphism in Forth and Back (open &
continuous) that satisfies Base.

Thm. For topological models (A, τA, vA) and (B , τB , vB) and a
bisimulation S between them,

• If (a, b) ∈ S , then for any ϕ ∈ L�,
a ∈ JϕKA ⇐⇒ b ∈ JϕKB

• If S is Entire, then

JϕKB = B =⇒ JϕKA = A

• If S is Coentire, then
JϕKA = A =⇒ JϕKB = B
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Dynamic Topological Modal Logic

My research (in particular my master’s thesis) explores bisimulations of
dynamic topological models, which are models (A, τA, {fσ}σ∈Σ , vA)
interpreting

ϕ, ψ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ | ©σϕ

with the appropriate notion of bisimulation.

This has an interesting philosophical interpretation if we read �ϕ as “ϕ is
knowably (or verifiably) true” and ©σϕ as “after performing (or
executing) σ, ϕ holds”.
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Thank you!
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